2019獨角獸企業重金招聘Python工程師標準>>>
?
關于K-Means介紹很多,還不清楚可以查一些相關資料。
個人對其實現步驟簡單總結為4步:
1.選出k值,隨機出k個起始質心點。?
?
2.分別計算每個點和k個起始質點之間的距離,就近歸類。?
?
3.最終中心點集可以劃分為k類,分別計算每類中新的中心點。?
?
4.重復2,3步驟對所有點進行歸類,如果當所有分類的質心點不再改變,則最終收斂。
?
下面貼代碼。
1.入口類,基本讀取數據源進行訓練然后輸出。 數據源文件和源碼后面會補上。
package com.hyr.kmeans;import au.com.bytecode.opencsv.CSVReader;import java.io.FileReader;
import java.io.FileWriter;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;public class KmeansMain {public static void main(String[] args) throws IOException {// 讀取數據源文件CSVReader reader = new CSVReader(new FileReader("src/main/resources/data.csv")); // 數據源FileWriter writer = new FileWriter("src/main/resources/out.csv");List<String[]> myEntries = reader.readAll(); // 6.8, 12.6// 轉換數據點集List<Point> points = new ArrayList<Point>(); // 數據點集for (String[] entry : myEntries) {points.add(new Point(Float.parseFloat(entry[0]), Float.parseFloat(entry[1])));}int k = 6; // K值int type = 1;KmeansModel model = Kmeans.run(points, k, type);writer.write("==================== K is " + model.getK() + " , Object Funcion Value is " + model.getOfv() + " , calc_distance_type is " + model.getCalc_distance_type() + " ====================\n");int i = 0;for (Cluster cluster : model.getClusters()) {i++;writer.write("==================== classification " + i + " ====================\n");for (Point point : cluster.getPoints()) {writer.write(point.toString() + "\n");}writer.write("\n");writer.write("centroid is " + cluster.getCentroid().toString());writer.write("\n\n");}writer.close();}}
?
2.最終生成的模型類,也就是最終訓練好的結果。K值,計算的點距離類型以及object function value值。
package com.hyr.kmeans;import java.util.ArrayList;
import java.util.List;public class KmeansModel {private List<Cluster> clusters = new ArrayList<Cluster>();private Double ofv;private int k; // k值private int calc_distance_type;public KmeansModel(List<Cluster> clusters, Double ofv, int k, int calc_distance_type) {this.clusters = clusters;this.ofv = ofv;this.k = k;this.calc_distance_type = calc_distance_type;}public List<Cluster> getClusters() {return clusters;}public Double getOfv() {return ofv;}public int getK() {return k;}public int getCalc_distance_type() {return calc_distance_type;}
}
?
3.數據集點對象,包含點的維度,代碼里只給出了x軸,y軸二維。以及點的距離計算。通過類型選擇距離公式。給出了幾種常用的距離公式。
package com.hyr.kmeans;public class Point {private Float x; // x 軸private Float y; // y 軸public Point(Float x, Float y) {this.x = x;this.y = y;}public Float getX() {return x;}public void setX(Float x) {this.x = x;}public Float getY() {return y;}public void setY(Float y) {this.y = y;}@Overridepublic String toString() {return "Point{" +"x=" + x +", y=" + y +'}';}/*** 計算距離** @param centroid 質心點* @param type* @return*/public Double calculateDistance(Point centroid, int type) {// TODODouble result = null;switch (type) {case 1:result = calcL1Distance(centroid);break;case 2:result = calcCanberraDistance(centroid);break;case 3:result = calcEuclidianDistance(centroid);break;}return result;}/*計算距離公式*/private Double calcL1Distance(Point centroid) {double res = 0;res = Math.abs(getX() - centroid.getX()) + Math.abs(getY() - centroid.getY());return res / (double) 2;}private double calcEuclidianDistance(Point centroid) {return Math.sqrt(Math.pow((centroid.getX() - getX()), 2) + Math.pow((centroid.getY() - getY()), 2));}private double calcCanberraDistance(Point centroid) {double res = 0;res = Math.abs(getX() - centroid.getX()) / (Math.abs(getX()) + Math.abs(centroid.getX()))+ Math.abs(getY() - centroid.getY()) / (Math.abs(getY()) + Math.abs(centroid.getY()));return res / (double) 2;}@Overridepublic boolean equals(Object obj) {Point other = (Point) obj;if (getX().equals(other.getX()) && getY().equals(other.getY())) {return true;}return false;}
}
?
4.訓練后最終得到的分類。包含該分類的質點,屬于該分類的點集合該分類是否收斂。
package com.hyr.kmeans;import java.util.ArrayList;
import java.util.List;public class Cluster {private List<Point> points = new ArrayList<Point>(); // 屬于該分類的點集private Point centroid; // 該分類的中心質點private boolean isConvergence = false;public Point getCentroid() {return centroid;}public void setCentroid(Point centroid) {this.centroid = centroid;}@Overridepublic String toString() {return centroid.toString();}public List<Point> getPoints() {return points;}public void setPoints(List<Point> points) {this.points = points;}public void initPoint() {points.clear();}public boolean isConvergence() {return isConvergence;}public void setConvergence(boolean convergence) {isConvergence = convergence;}
}
?
5.K-Meams訓練類。按照上面所說四個步驟不斷進行訓練。
package com.hyr.kmeans;import java.util.ArrayList;
import java.util.List;
import java.util.Random;public class Kmeans {/*** kmeans** @param points 數據集* @param k K值* @param k 計算距離方式*/public static KmeansModel run(List<Point> points, int k, int type) {// 初始化質心點List<Cluster> clusters = initCentroides(points, k);while (!checkConvergence(clusters)) { // 所有分類是否全部收斂// 1.計算距離對每個點進行分類// 2.判斷質心點是否改變,未改變則該分類已經收斂// 3.重新生成質心點initClusters(clusters); // 重置分類中的點classifyPoint(points, clusters, type);// 計算距離進行分類recalcularCentroides(clusters); // 重新計算質心點}// 計算目標函數值Double ofv = calcularObjetiFuncionValue(clusters);KmeansModel kmeansModel = new KmeansModel(clusters, ofv, k, type);return kmeansModel;}/*** 初始化k個質心點** @param points 點集* @param k K值* @return 分類集合對象*/private static List<Cluster> initCentroides(List<Point> points, Integer k) {List<Cluster> centroides = new ArrayList<Cluster>();// 求出數據集的范圍(找出所有點的x最小、最大和y最小、最大坐標。)Float max_X = Float.NEGATIVE_INFINITY;Float max_Y = Float.NEGATIVE_INFINITY;Float min_X = Float.POSITIVE_INFINITY;Float min_Y = Float.POSITIVE_INFINITY;for (Point point : points) {max_X = max_X < point.getX() ? point.getX() : max_X;max_Y = max_Y < point.getY() ? point.getY() : max_Y;min_X = min_X > point.getX() ? point.getX() : min_X;min_Y = min_Y > point.getY() ? point.getY() : min_Y;}System.out.println("min_X" + min_X + ",max_X:" + max_X + ",min_Y" + min_Y + ",max_Y" + max_Y);// 在范圍內隨機初始化k個質心點Random random = new Random();// 隨機初始化k個中心點for (int i = 0; i < k; i++) {float x = random.nextFloat() * (max_X - min_X) + min_X;float y = random.nextFloat() * (max_Y - min_Y) + min_X;Cluster c = new Cluster();Point centroide = new Point(x, y); // 初始化的隨機中心點c.setCentroid(centroide);centroides.add(c);}return centroides;}/*** 重新計算質心點** @param clusters*/private static void recalcularCentroides(List<Cluster> clusters) {for (Cluster c : clusters) {if (c.getPoints().isEmpty()) {c.setConvergence(true);continue;}// 求均值,作為新的質心點Float x;Float y;Float sum_x = 0f;Float sum_y = 0f;for (Point point : c.getPoints()) {sum_x += point.getX();sum_y += point.getY();}x = sum_x / c.getPoints().size();y = sum_y / c.getPoints().size();Point nuevoCentroide = new Point(x, y); // 新的質心點if (nuevoCentroide.equals(c.getCentroid())) { // 如果質心點不再改變 則該分類已經收斂c.setConvergence(true);} else {c.setCentroid(nuevoCentroide);}}}/*** 計算距離,對點集進行分類** @param points 點集* @param clusters 分類* @param type 計算距離方式*/private static void classifyPoint(List<Point> points, List<Cluster> clusters, int type) {for (Point point : points) {Cluster masCercano = clusters.get(0); // 該點計算距離后所屬的分類Double minDistancia = Double.MAX_VALUE; // 最小距離for (Cluster cluster : clusters) {Double distancia = point.calculateDistance(cluster.getCentroid(), type); // 點和每個分類質心點的距離if (minDistancia > distancia) { // 得到該點和k個質心點最小的距離minDistancia = distancia;masCercano = cluster; // 得到該點的分類}}masCercano.getPoints().add(point); // 將該點添加到距離最近的分類中}}private static void initClusters(List<Cluster> clusters) {for (Cluster cluster : clusters) {cluster.initPoint();}}/*** 檢查收斂** @param clusters* @return*/private static boolean checkConvergence(List<Cluster> clusters) {for (Cluster cluster : clusters) {if (!cluster.isConvergence()) {return false;}}return true;}/*** 計算目標函數值** @param clusters* @return*/private static Double calcularObjetiFuncionValue(List<Cluster> clusters) {Double ofv = 0d;for (Cluster cluster : clusters) {for (Point point : cluster.getPoints()) {int type = 1;ofv += point.calculateDistance(cluster.getCentroid(), type);}}return ofv;}
}
?
最終訓練結果:
==================== K is 6 , Object Funcion Value is 21.82857036590576 , calc_distance_type is 3 ====================
==================== classification 1 ====================
Point{x=3.5, y=12.5}centroid is Point{x=3.5, y=12.5}==================== classification 2 ====================
Point{x=6.8, y=12.6}
Point{x=7.8, y=12.2}
Point{x=8.2, y=11.1}
Point{x=9.6, y=11.1}centroid is Point{x=8.1, y=11.75}==================== classification 3 ====================
Point{x=4.4, y=6.5}
Point{x=4.8, y=1.1}
Point{x=5.3, y=6.4}
Point{x=6.6, y=7.7}
Point{x=8.2, y=4.5}
Point{x=8.4, y=6.9}
Point{x=9.0, y=3.4}centroid is Point{x=6.671428, y=5.2142863}==================== classification 4 ====================
Point{x=6.0, y=19.9}
Point{x=6.2, y=18.5}
Point{x=5.3, y=19.4}
Point{x=7.6, y=17.4}centroid is Point{x=6.275, y=18.800001}==================== classification 5 ====================
Point{x=0.8, y=9.8}
Point{x=1.2, y=11.6}
Point{x=2.8, y=9.6}
Point{x=3.8, y=9.9}centroid is Point{x=2.15, y=10.225}==================== classification 6 ====================
Point{x=6.1, y=14.3}centroid is Point{x=6.1, y=14.3}
?
代碼下載地址:
http://download.csdn.net/download/huangyueranbbc/10267041
github:?
https://github.com/huangyueranbbc/KmeansDemo?
?