二、編碼器機能20鐘頭前 碼率節制的意見常識: 碼率節制的目的以及意義: 圖象通訊中碼率節制的目的:路程經過過程調治編碼參量,節制單元時間內的編碼視頻文件流的數值量,以使 ...
二、編碼器機能20鐘頭前
碼率節制的意見常識:
碼率節制的目的以及意義:
圖象通訊中碼率節制的目的:路程經過過程調治編碼參量,節制單元時間內的編碼視頻文件流的數值量,以使孕育發生的比特流切合各類應用的需求視頻文件壓縮的效率以及視頻文件內部實質意義有很大的瓜葛,對變化多樣的銀幕,視頻文件編碼的輸出的碼流變化較大,在信道環境欠好的時辰就容易引被押送碼端預示的質量的不不變
率掉真意見:
因為傳道輸送帶寬厚溫以及儲存空間的限定,視頻文件應用對壓縮比有較高的要求而無損編碼較低的壓縮比沒有辦法饜足視頻文件在現實應用中的需求但若給視頻文件引入一定水平的掉真,凡是可以獲患上較高的壓縮比
率掉真意見對有損壓縮減編制碼下的掉真以及編碼機能之間的瓜葛的描寫,為碼率節制的研究供給了堅實的意見依據率掉真意見大旨是描寫編碼掉真度以及編碼數值速度的瓜葛該意見成立在圖象是持續的根蒂根基上的,在有限數值速度下,因為存在量化偏差,肯定是存在掉真當施用有損編碼要領時,重修圖象g(x,y)以及原始圖象f(x,y)之間存在差異,掉真度D的函數情勢在乎見上是可以按照需要自由拔取的,在圖象編碼中,D經常使用均方差情勢暗示的,典型的率掉真曲線R(D)為D的凸減函數
對怎么選擇哪1個函數的率掉真效驗更好,則是比力哪1個函數的率掉真函數更為靠近典型的率掉真函數的曲線
x264碼率節制要領:接納的碼率節制算法并無接納拉格朗日價錢函數來節制編碼,而是施用一種更簡略的要領,即哄騙半精疏密程度幀的SATD(sum of absolute transformed difference)作為標準樣式選擇的依據SATD行將殘差經哈德曼變換的4×4塊的預先推測殘差絕對值全體,可以將其看作簡略的時頻變換,其值在一定水平上可以反應天生碼流的巨細SATD是將殘差經哈達曼變換4*4塊的預先推測殘差絕對值全體自順應宏塊層碼率節制計謀:X264的宏塊沒有不論什么碼率節制的機制,其在幀層獲患上1個QP后,歸屬該幀的所有宏塊都用著同一的QP舉行量化
碼率節制機能揣測:
一、比特率偏差|ABR-TBR|/TBR ,越小越好
三、緩以及沖突區滿度與TBL的般配水平
四、跳幀數
五、PSNR顛簸越小越好
x264中碼率節制的流程(對重點函數鄙人面有注釋):
1.在舉行編碼時,Encode--->x264_encoder_open(主如果舉行參量的改訂配置,舉行初始化)---->x264_ratecontrol_new
2.encode--->Encode_frame--->x264_encoder_encode--->x2 64_ratecontrol_slice_type
3.encode--->Encode_frame--->x264_encoder_encode--->x2 64_ratecontrol_start**************
4.encode--->Encode_frame--->x264_encoder_encode--->x2 64_ratecontrol_qp
5.encode--->Encode_frame--->x264_encoder_encode--->x2 64_slices_write--->x264_slice_write
--->x264_ratecontrol_mb********************
6.encode--->Encode_frame--->x264_encoder_encode--->x2 64_ratecontrol_end(在編完一幀事后)
7.在編完事后,encode--->x264_encoder_關了---->ratecontrol summary/x264_ratecontrol_delete
函數注釋:
在編碼中所用的編碼體式格局:
#define X264_RC_CQP 0
#define X264_RC_CRF 1
#define X264_RC_ABR 2
1.
x264_ratecontrol_new( x264_t *h )
{ // 獲取RC體式格局,FPS,bitrate,rc->buffer_rate,rc->buffer_size
// 在碼率節制的時辰會浮現2pass,參量的初始化
rc = h->rc;
rc->b_abr = h->param.rc.i_rc_method != X264_RC_CQP && !h->param.rc.b_stat_read;
rc->b_2pass = h->param.rc.i_rc_method == X264_RC_ABR && h->param.rc.b_stat_read;
..........
if( h->param.rc.b_mb_tree )//這搭配置mb_tree
{
h->param.rc.f_pb_factor = 1;
rc->qcompress = 1;
}
else
rc->qcompress = h->param.rc.f_qcompress;
..............
rc->ip_offset = 6.0 * log(h->param.rc.f_ip_factor) / log(2.0);
rc->pb_offset = 6.0 * log(h->param.rc.f_pb_factor) / log(2.0);
rc->qp_constant[SLICE_TYPE_P] = h->param.rc.i_qp_constant;
rc->qp_constant[SLICE_TYPE_I] = x264_clip3( h->param.rc.i_qp_constant - rc->ip_offset + 0.5, 0, 51 );
rc->qp_constant[SLICE_TYPE_B] = x264_clip3( h->param.rc.i_qp_constant + rc->pb_offset + 0.5, 0, 51 );
}
2.
int x264_ratecontrol_slice_type( x264_t *h, int frame_num )
{
//按照差別類型來獲取差別的qp_constant
h->param.rc.i_qp_constant = (h->stat.i_frame_count[SLICE_TYPE_P] == 0) ? 24
: 1 + h->stat.f_frame_qp[SLICE_TYPE_P] / h->stat.i_frame_count[SLICE_TYPE_P];
rc->qp_constant[SLICE_TYPE_P] = x264_clip3( h->param.rc.i_qp_constant, 0, 51 );
rc->qp_constant[SLICE_TYPE_I] = x264_clip3( (int)( qscale2qp( qp2qscale( h->param.rc.i_qp_constant ) / fabs( h->param.rc.f_ip_factor )) + 0.5 ), 0, 51 );
rc->qp_constant[SLICE_TYPE_B] = x264_clip3( (int)( qscale2qp( qp2qscale( h->param.rc.i_qp_constant ) * fabs( h->param.rc.f_pb_factor )) + 0.5 ), 0, 51 );
}
3.
x264_ratecontrol_start( h, h->fenc->i_qpplus1, overhead*8 );
這個函數的目的就是在一幀的編碼前就選擇QP
/* Init the rate control */
/* FIXME: Include slice header bit cost. */
x264_ratecontrol_start( h, h->fenc->i_qpplus1, overhead*8 );
對x264_ratecontrol_start函數的剖析如次:
x264_zone_t *zone = get_zone( h, h->fenc->i_frame );//找到h->fenc->i_frame地點的zone
....................
//由各類差別的slice類型,vbv等等參量獲取的q值
if( i_force_qp )
{
q = i_force_qp - 1;//
}
else if( rc->b_abr )
{
q = qscale2qp( rate_estimate_qscale( h ) );//底下有注釋
}
else if( rc->b_2pass )
{
rce->new_qscale = rate_estimate_qscale( h );
q = qscale2qp( rce->new_qscale );
}
else /* CQP */
{
if( h->sh.i_type == SLICE_TYPE_B && h->fdec->b_kept_as_ref )
q = ( rc->qp_constant[ SLICE_TYPE_B ] + rc->qp_constant[ SLICE_TYPE_P ] ) / 2;
else
q = rc->qp_constant[ h->sh.i_type ];
if( zone )
{
if( zone->b_force_qp )
q += zone->i_qp - rc->qp_constant[SLICE_TYPE_P];
else
q -= 6*log(zone->f_bitrate_factor)/log⑵;
}
//
/* Terminology:
* qp = h.264''s quantizer
* qscale = linearized quantizer = Lagrange multiplier
*/
static inline double qp2qscale(double qp)
{
return 0.85 * pow(2.0, ( qp - 12.0 ) / 6.0);
}
static inline double qscale2qp(double qscale)
{
return 12.0 + 6.0 * log(qscale/0.85) / log(2.0);
}
// //
rate_estimate_qscale( h )
// update qscale for 1 frame based on actual bits used so far(即按照所需BIT來計較qscale)
static float rate_estimate_qscale( x264_t *h )
{
//這搭是別離針對B,P幀別離舉行,因為I幀是已設定
if( pict_type == SLICE_TYPE_B )
{
//這搭B幀的q的巨細是由參考幀求的
.....................
.....................
// 由predict_size獲患上幀的size
rcc->frame_size_planned = predict_size( rcc->pred_b_from_p, q, h->fref1[h->i_ref1-1]->i_satd );
x264_ratecontrol_set_estimated_size(h, rcc->frame_size_planned);
//
void x264_ratecontrol_set_estimated_size( x264_t *h, int bits )
{
x264_pthread_mutex_lock( &h->fenc->mutex );
h->rc->frame_size_estimated = bits;///***********
x264_pthread_mutex_unlock( &h->fenc->mutex );
}
}
P幀的q值獲取
else
{
//這搭的分有1pass以及2pass的選擇
...................
選擇predicted_bits,求出diff
diff = predicted_bits - (int64_t)rce.expected_bits;
q /= x264_clip3f((double)(abr_buffer - diff) / abr_buffer, .5, 2);
}
}
4.
int x264_ratecontrol_qp( x264_t *h )
{
return h->rc->qpm;
}
5.
void x264_ratecontrol_mb( x264_t *h, int bits )
{
//這個函數主如果針對一行的bits
if( h->sh.i_type == SLICE_TYPE_B )
{
//由參考的圖象求對應的行的qp,有已編碼的bits獲患上此行的bits以及qp
int avg_qp = X264_MIN(h->fref0[0]->i_row_qp[y+1], h->fref1[0]->i_row_qp[y+1])
+ rc->pb_offset * ((h->fenc->i_type == X264_TYPE_BREF) ? 0.5 : 1);
rc->qpm = X264_MIN(X264_MAX( rc->qp, avg_qp), 51); //avg_qp could go hellogher than 51 due to pb_offset
i_estimated = row_bits_so_far(h, y); //FIXME: compute full estimated size
if (i_estimated > h->rc->frame_size_planned)
x264_ratecontrol_set_estimated_size(h, i_estimated);
}
//I, p,這搭還要參考緩以及沖突區的狀況
else
{
//對I,P幀在思量VBV的環境下求的bits以及qp
}
}
6.
/* After encoding one frame, save stats and update ratecontrol state */
int x264_ratecontrol_end( x264_t *h, int bits )
{
///計數ipb類型的Mb的個數,并計較均等QP
h->fdec->f_qp_avg_rc = rc->qpa_rc /= h->mb.i_mb_count;
h->fdec->f_qp_avg_aq = rc->qpa_aq /= h->mb.i_mb_count;
}
7.
void x264_ratecontrol_summary( x264_t *h )
{
x264_ratecontrol_t *rc = h->rc;
//ABR
if( rc->b_abr && h->param.rc.i_rc_method == X264_RC_ABR && rc->cbr_decay > .9999 )
{
double base_cplx = h->mb.i_mb_count * (h->param.i_bframe ? 120 : 80);
double mbtree_offset = h->param.rc.b_mb_tree ? (1.0-h->param.rc.f_qcompress)*13.5 : 0;
x264_log( h, X264_LOG_INFO, "final ratefactor: %.2f\n",
qscale2qp( pow( base_cplx, 1 - rc->qcompress )
* rc->cplxr_sum / rc->wanted_bits_window ) - mbtree_offset );
}
}
/
void x264_ratecontrol_delete( x264_t *h )///開釋RC斥地的空間
路程經過過程以上的流程總結x264碼率節制的歷程基本是有以下三步:
1.對碼率節制的相干變量舉行初始化,如,I,P,B的初始QP值,RC的體式格局,VBV的初始狀況等等;
2.獲取編碼幀的龐氣量寬宏,x264用SATD暗示,對接納的差別參量的碼率節制的體式格局,由前邊已編碼的Bits,龐氣量寬宏,方針比特的配置等一些前提來獲取編碼時下幀的qp值
3.在編碼歷程中,由獲患上qp值獲患上預先推測的bits;
測試部門:
1.簡略參量配置:
參量配置:
--frames 10 --qp 26 -o test.264 F:\.......\akiyo_qcif.yuv 176x144
其它的參量接納默許配置(在默許配置時接納的碼率節制模子是X264_RC_CQP),所患上的測試成果:
x264 [info]: 176x144 @ 25.00 fps
x264 [info]: using cpu capabilities: MMX2 SSE2 Cache64 Slow_mod4_stack
x264 [info]: profile High, level 1.1
x264 [info]: frame I:1 Avg QP:23.00 size: 4189
x264 [info]: frame P:3 Avg QP:26.00 size: 62
x264 [info]: frame B:6 Avg QP:28.00 size: 38
x264 [info]: consecutive B-frames: 11.1% 0.0% 0.0% 88.9%
x264 [info]: mb I I16..4: 3.0% 41.4% 55.6%
x264 [info]: mb P I16..4: 0.0% 0.0% 0.0% P16..4: 3.0% 1.3% 1.7% 0.0% 0
.0% skip:93.9%
x264 [info]: mb B I16..4: 0.0% 0.0% 0.0% B16..8: 4.4% 0.2% 0.3% direct:
0.7% skip:94.4% L0:56.0% L1:40.5% BI: 3.4%
x264 [info]: 8x8 transform intra:41.4% inter:25.9%
x264 [info]: coded y,uvDC,uvAC intra: 83.6% 81.8% 68.7% inter: 1.1% 0.1% 0.0%
x264 [info]: i16 v,h,dc,p: 100% 0% 0% 0%
x264 [info]: i8 v,h,dc,ddl,ddr,vr,hd,vl,hu: 25% 30% 15% 4% 4% 4% 7% 5% 6%
x264 [info]: i4 v,h,dc,ddl,ddr,vr,hd,vl,hu: 35% 18% 8% 5% 5% 10% 5% 8% 6%
x264 [info]: ref P L0: 88.9% 0.0% 11.1%
x264 [info]: kb/s:92.08
encoded 10 frames, 24.33 fps, 92.08 kb/s
2.轉變碼率節制的模子:
--frames 10 --qp 26 --crf 2 -o test.264 F:\......\akiyo_qcif.yuv 176x144
x264 [info]: 176x144 @ 25.00 fps
x264 [info]: using cpu capabilities: MMX2 SSE2 Cache64 Slow_mod4_stack
x264 [info]: profile High, level 1.1
x264 [info]: frame I:1 Avg QP:10.00 size: 10246
x264 [info]: frame P:3 Avg QP:11.48 size: 847
x264 [info]: frame B:6 Avg QP:12.10 size: 172
x264 [info]: consecutive B-frames: 11.1% 0.0% 0.0% 88.9%
x264 [info]: mb I I16..4: 1.0% 44.4% 54.5%
x264 [info]: mb P I16..4: 0.0% 0.0% 0.0% P16..4: 30.0% 3.0% 4.7% 0.0% 0
.0% skip:62.3%
x264 [info]: mb B I16..4: 0.0% 0.0% 0.0% B16..8: 6.9% 1.0% 1.2% direct:
4.0% skip:86.9% L0:34.7% L1:55.6% BI: 9.7%
x264 [info]: 8x8 transform intra:44.4% inter:34.8%
x264 [info]: coded y,uvDC,uvAC intra: 100.0% 99.0% 94.9% inter: 11.6% 7.6% 4.9%
x264 [info]: i16 v,h,dc,p: 100% 0% 0% 0%
x264 [info]: i8 v,h,dc,ddl,ddr,vr,hd,vl,hu: 30% 33% 16% 3% 2% 3% 4% 4% 5%
x264 [info]: i4 v,h,dc,ddl,ddr,vr,hd,vl,hu: 28% 12% 11% 5% 7% 11% 6% 12% 8%
x264 [info]: ref P L0: 95.8% 1.6% 2.7%
x264 [info]: ref B L0: 96.3% 3.7%
x264 [info]: kb/s:276.36
encoded 10 frames, 14.27 fps, 276.36 kb/s
針對1,2兩個測試,所接納的RC模子紛歧樣,1:X264_RC_CQP,2:X264_RC_CRF,其它參量的配置同樣,從IPB的均等QP,編碼Bits可以看出以及對現實的應用來講,CRF的效驗不比CQP
3.
--frames 10 --qp 26 --pass 1 -o test.264 F:\.....\bin\akiyo_qcif.yuv 176x144
x264 [info]: 176x144 @ 25.00 fps
x264 [info]: using cpu capabilities: MMX2 SSE2 Cache64 Slow_mod4_stack
x264 [info]: profile Main, level 1.1
x264 [info]: frame I:1 Avg QP:23.00 size: 4068
x264 [info]: frame P:3 Avg QP:26.00 size: 59
x264 [info]: frame B:6 Avg QP:28.00 size: 31
x264 [info]: consecutive B-frames: 11.1% 0.0% 0.0% 88.9%
x264 [info]: mb I I16..4: 15.2% 0.0% 84.8%
x264 [info]: mb P I16..4: 0.0% 0.0% 0.0% P16..4: 7.1% 0.0% 0.0% 0.0% 0
.0% skip:92.9%
x264 [info]: mb B I16..4: 0.0% 0.0% 0.0% B16..8: 1.2% 0.0% 0.0% direct:
1.5% skip:97.3% L0:100.0% L1: 0.0% BI: 0.0%
x264 [info]: coded y,uvDC,uvAC intra: 87.4% 77.8% 68.7% inter: 1.1% 0.1% 0.0%
x264 [info]: i16 v,h,dc,p: 47% 20% 27% 7%
x264 [info]: i4 v,h,dc,ddl,ddr,vr,hd,vl,hu: 29% 27% 10% 5% 4% 8% 5% 6% 5%
x264 [info]: kb/s:88.58
encoded 10 frames, 52.63 fps, 88.58 kb/s
4.
--frames 10 --qp 26 --pass 2 -o test.264 F:\.....\bin\akiyo_qcif.yuv 176x144
x264 [info]: 176x144 @ 25.00 fps
x264 [info]: using cpu capabilities: MMX2 SSE2 Cache64 Slow_mod4_stack
x264 [info]: profile High, level 1.1
x264 [info]: frame I:1 Avg QP:23.00 size: 4189
x264 [info]: frame P:3 Avg QP:26.00 size: 62
x264 [info]: frame B:6 Avg QP:28.00 size: 38
x264 [info]: consecutive B-frames: 11.1% 0.0% 0.0% 88.9%
x264 [info]: mb I I16..4: 3.0% 41.4% 55.6%
x264 [info]: mb P I16..4: 0.0% 0.0% 0.0% P16..4: 3.0% 1.3% 1.7% 0.0% 0
.0% skip:93.9%
x264 [info]: mb B I16..4: 0.0% 0.0% 0.0% B16..8: 4.4% 0.2% 0.3% direct:
0.7% skip:94.4% L0:56.0% L1:40.5% BI: 3.4%
x264 [info]: 8x8 transform intra:41.4% inter:25.9%
x264 [info]: coded y,uvDC,uvAC intra: 83.6% 81.8% 68.7% inter: 1.1% 0.1% 0.0%
x264 [info]: i16 v,h,dc,p: 100% 0% 0% 0%
x264 [info]: i8 v,h,dc,ddl,ddr,vr,hd,vl,hu: 25% 30% 15% 4% 4% 4% 7% 5% 6%
x264 [info]: i4 v,h,dc,ddl,ddr,vr,hd,vl,hu: 35% 18% 8% 5% 5% 10% 5% 8% 6%
x264 [info]: ref P L0: 88.9% 0.0% 11.1%
x264 [info]: kb/s:92.08
encoded 10 frames, 27.70 fps, 92.08 kb/s
5.
--frames 10 --qp 26 --pass 3 -o test.264 F:\.....\bin\akiyo_qcif.yuv 176x144
x264 [info]: 176x144 @ 25.00 fps
x264 [info]: using cpu capabilities: MMX2 SSE2 Cache64 Slow_mod4_stack
x264 [info]: profile High, level 1.1
x264 [info]: frame I:1 Avg QP:23.00 size: 4189
x264 [info]: frame P:3 Avg QP:26.00 size: 62
x264 [info]: frame B:6 Avg QP:28.00 size: 38
x264 [info]: consecutive B-frames: 11.1% 0.0% 0.0% 88.9%
x264 [info]: mb I I16..4: 3.0% 41.4% 55.6%
x264 [info]: mb P I16..4: 0.0% 0.0% 0.0% P16..4: 3.0% 1.3% 1.7% 0.0% 0
.0% skip:93.9%
x264 [info]: mb B I16..4: 0.0% 0.0% 0.0% B16..8: 4.4% 0.2% 0.3% direct:
0.7% skip:94.4% L0:56.0% L1:40.5% BI: 3.4%
x264 [info]: 8x8 transform intra:41.4% inter:25.9%
x264 [info]: coded y,uvDC,uvAC intra: 83.6% 81.8% 68.7% inter: 1.1% 0.1% 0.0%
x264 [info]: i16 v,h,dc,p: 100% 0% 0% 0%
x264 [info]: i8 v,h,dc,ddl,ddr,vr,hd,vl,hu: 25% 30% 15% 4% 4% 4% 7% 5% 6%
x264 [info]: i4 v,h,dc,ddl,ddr,vr,hd,vl,hu: 35% 18% 8% 5% 5% 10% 5% 8% 6%
x264 [info]: ref P L0: 88.9% 0.0% 11.1%
x264 [info]: kb/s:92.08
encoded 10 frames, 25.64 fps, 92.08 kb/s
對3,4,5是涉及Pass的測試比力:
屢次壓縮碼率節制
1:熬頭次壓縮,始于計數文件
2:按成立的計數文件壓縮并輸出,不籠罩計數文件,
3:按成立的計數文件壓縮,優化計數文件
在想獲患上建好的效驗的時辰接納pass 2就能夠了
6.
--frames 10 --qp 26 --bitrate 64 -o test.264 F:\.....\bin\akiyo_qcif.yuv 176x144
x264 [info]: 176x144 @ 25.00 fps
x264 [info]: using cpu capabilities: MMX2 SSE2 Cache64 Slow_mod4_stack
x264 [info]: profile High, level 1.1
x264 [info]: frame I:1 Avg QP:38.31 size: 1461
x264 [info]: frame P:3 Avg QP:42.00 size: 18
x264 [info]: frame B:6 Avg QP:45.00 size: 14
x264 [info]: consecutive B-frames: 11.1% 0.0% 0.0% 88.9%
x264 [info]: mb I I16..4: 15.2% 68.7% 16.2%
x264 [info]: mb P I16..4: 0.0% 0.0% 0.0% P16..4: 2.0% 0.0% 0.3% 0.0% 0
.0% skip:97.6%
x264 [info]: mb B I16..4: 0.0% 0.0% 0.0% B16..8: 0.2% 0.0% 0.0% direct:
0.0% skip:99.8% L0: 0.0% L1:100.0% BI: 0.0%
x264 [info]: final ratefactor: 31.50
x264 [info]: 8x8 transform intra:68.7%
x264 [info]: coded y,uvDC,uvAC intra: 48.0% 61.6% 32.3% inter: 0.0% 0.0% 0.0%
x264 [info]: i16 v,h,dc,p: 33% 47% 7% 13%
x264 [info]: i8 v,h,dc,ddl,ddr,vr,hd,vl,hu: 35% 17% 20% 3% 4% 7% 3% 7% 5%
x264 [info]: i4 v,h,dc,ddl,ddr,vr,hd,vl,hu: 50% 14% 8% 5% 5% 5% 3% 6% 4%
x264 [info]: kb/s:31.94
encoded 10 frames, 31.25 fps, 31.94 kb/s
7.
--frames 250 --qp 26 --bitrate 64 -o test.264 F:\.....\bin\akiyo_qcif.yuv 176x144
x264 [info]: 176x144 @ 25.00 fps
x264 [info]: using cpu capabilities: MMX2 SSE2 Cache64 Slow_mod4_stack
x264 [info]: profile High, level 1.1
x264 [info]: frame I:1 Avg QP:34.62 size: 1779
x264 [info]: frame P:92 Avg QP:19.81 size: 569
x264 [info]: frame B:157 Avg QP:26.76 size: 53
x264 [info]: consecutive B-frames: 15.7% 0.0% 2.4% 81.9%
x264 [info]: mb I I16..4: 14.1% 61.6% 24.2%
x264 [info]: mb P I16..4: 0.0% 0.0% 0.0% P16..4: 25.8% 9.4% 9.9% 0.0% 0
.0% skip:54.8%
x264 [info]: mb B I16..4: 0.0% 0.0% 0.0% B16..8: 13.9% 0.7% 1.4% direct:
1.1% skip:83.0% L0:16.6% L1:72.1% BI:11.3%
x264 [info]: final ratefactor: 18.97
x264 [info]: 8x8 transform intra:61.5% inter:40.4%
x264 [info]: coded y,uvDC,uvAC intra: 61.3% 65.4% 34.6% inter: 8.6% 6.8% 2.8%
x264 [info]: i16 v,h,dc,p: 57% 43% 0% 0%
x264 [info]: i8 v,h,dc,ddl,ddr,vr,hd,vl,hu: 32% 22% 18% 4% 2% 7% 3% 7% 4%
x264 [info]: i4 v,h,dc,ddl,ddr,vr,hd,vl,hu: 45% 10% 10% 5% 6% 7% 6% 6% 5%
x264 [info]: ref P L0: 87.6% 7.6% 4.8%
x264 [info]: ref B L0: 95.0% 5.0%
x264 [info]: kb/s:49.92
encoded 250 frames, 16.74 fps, 49.92 kb/s
6,7是針對差別的編碼幀數來舉行比力的,在編碼幀數越多,帶寬哄騙的效驗就越好
6,7是在配置了方針碼率64kp/s時,接納的是ABR的RC模子,在配置了方針碼率可以興許按照方針碼率的巨細轉變QP巨細,可以興許節制碼率