Awesome Deep Vision

本文轉自:https://github.com/kjw0612/awesome-deep-vision

? ? ? ? ? ? ? ? ?http://jiwonkim.org/awesome-deep-vision/

A curated list of deep learning resources for computer vision, inspired by?awesome-php?and?awesome-computer-vision.

Maintainers -?Jiwon Kim,?Heesoo Myeong,?Myungsub Choi,?Jung Kwon Lee

We are looking for a maintainer! Let me know (jiwon@alum.mit.edu) if interested.

Contributing

Please feel free to?pull requests?to add papers.

Join the chat at https://gitter.im/kjw0612/awesome-deep-vision

Sharing

  • Share on Twitter
  • Share on Facebook
  • Share on Google Plus
  • Share on LinkedIn

Table of Contents

  • Papers
    • ImageNet Classification
    • Object Detection
    • Object Tracking
    • Low-Level Vision
      • Super-Resolution
      • Other Applications
    • Edge Detection
    • Semantic Segmentation
    • Visual Attention and Saliency
    • Object Recognition
    • Understanding CNN
    • Image and Language
      • Image Captioning
      • Video Captioning
      • Question Answering
    • Other Topics
  • Courses
  • Books
  • Videos
  • Software
    • Framework
    • Applications
  • Tutorials
  • Blogs

Papers

ImageNet Classification

classification(from Alex Krizhevsky, Ilya Sutskever, Geoffrey E. Hinton, ImageNet Classification with Deep Convolutional Neural Networks, NIPS, 2012.)

  • Microsoft (PReLu/Weight Initialization)?[Paper]
    • Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun, Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification, arXiv:1502.01852.
  • Batch Normalization?[Paper]
    • Sergey Ioffe, Christian Szegedy, Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift, arXiv:1502.03167.
  • GoogLeNet?[Paper]
    • Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, Andrew Rabinovich, CVPR, 2015.
  • VGG-Net?[Web]?[Paper]
    • Karen Simonyan and Andrew Zisserman, Very Deep Convolutional Networks for Large-Scale Visual Recognition, ICLR, 2015.
  • AlexNet?[Paper]
    • Alex Krizhevsky, Ilya Sutskever, Geoffrey E. Hinton, ImageNet Classification with Deep Convolutional Neural Networks, NIPS, 2012.

Object Detection

object_detection(from Shaoqing Ren, Kaiming He, Ross Girshick, Jian Sun, Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks, arXiv:1506.01497.)

  • OverFeat, NYU?[Paper]
    • OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks, ICLR, 2014.
  • R-CNN, UC Berkeley?[Paper-CVPR14]?[Paper-arXiv14]
    • Ross Girshick, Jeff Donahue, Trevor Darrell, Jitendra Malik, Rich feature hierarchies for accurate object detection and semantic segmentation, CVPR, 2014.
  • SPP, Microsoft Research?[Paper]
    • Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun, Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition, ECCV, 2014.
  • Fast R-CNN, Microsoft Research?[Paper]
    • Ross Girshick, Fast R-CNN, arXiv:1504.08083.
  • Faster R-CNN, Microsoft Research?[Paper]
    • Shaoqing Ren, Kaiming He, Ross Girshick, Jian Sun, Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks, arXiv:1506.01497.
  • R-CNN minus R, Oxford?[Paper]
    • Karel Lenc, Andrea Vedaldi, R-CNN minus R, arXiv:1506.06981.
  • End-to-end people detection in crowded scenes?[Paper]
    • Russell Stewart, Mykhaylo Andriluka, End-to-end people detection in crowded scenes, arXiv:1506.04878.
  • You Only Look Once: Unified, Real-Time Object Detection?[Paper]
    • Joseph Redmon, Santosh Divvala, Ross Girshick, Ali Farhadi, You Only Look Once: Unified, Real-Time Object Detection, arXiv:1506.02640

Object Tracking

  • Seunghoon Hong, Tackgeun You, Suha Kwak, Bohyung Han, Online Tracking by Learning Discriminative Saliency Map with Convolutional Neural Network, arXiv:1502.06796.?[Paper]
  • Hanxi Li, Yi Li and Fatih Porikli, DeepTrack: Learning Discriminative Feature Representations by Convolutional Neural Networks for Visual Tracking, BMVC, 2014.?[Paper]
  • N Wang, DY Yeung, Learning a Deep Compact Image Representation for Visual Tracking, NIPS, 2013.?[Paper]
  • Chao Ma, Jia-Bin Huang, Xiaokang Yang and Ming-Hsuan Yang, "Hierarchical Convolutional Features for Visual Tracking", ICCV 2015?[GitHub]
  • Lijun Wang, Wanli Ouyang, Xiaogang Wang, and Huchuan Lu, "Visual Tracking with fully Convolutional Networks", ICCV 2015?[GitHub]?[Paper]

Low-Level Vision

Super-Resolution

  • Super-Resolution (SRCNN)?[Web]?[Paper-ECCV14]?[Paper-arXiv15]
    • Chao Dong, Chen Change Loy, Kaiming He, Xiaoou Tang, Learning a Deep Convolutional Network for Image Super-Resolution, ECCV, 2014.
    • Chao Dong, Chen Change Loy, Kaiming He, Xiaoou Tang, Image Super-Resolution Using Deep Convolutional Networks, arXiv:1501.00092.
  • Very Deep Super-Resolution
    • Jiwon Kim, Jung Kwon Lee, Kyoung Mu Lee, Accurate Image Super-Resolution Using Very Deep Convolutional Networks, arXiv:1511.04587, 2015.?[Paper]
  • Deeply-Recursive Convolutional Network
    • Jiwon Kim, Jung Kwon Lee, Kyoung Mu Lee, Deeply-Recursive Convolutional Network for Image Super-Resolution, arXiv:1511.04491, 2015.?[Paper]
  • Others
    • Osendorfer, Christian, Hubert Soyer, and Patrick van der Smagt, Image Super-Resolution with Fast Approximate Convolutional Sparse Coding, ICONIP, 2014.?[Paper ICONIP-2014]

Other Applications

  • Optical Flow (FlowNet)?[Paper]
    • Philipp Fischer, Alexey Dosovitskiy, Eddy Ilg, Philip H?usser, Caner Haz?rba?, Vladimir Golkov, Patrick van der Smagt, Daniel Cremers, Thomas Brox, FlowNet: Learning Optical Flow with Convolutional Networks, arXiv:1504.06852.
  • Compression Artifacts Reduction?[Paper-arXiv15]
    • Chao Dong, Yubin Deng, Chen Change Loy, Xiaoou Tang, Compression Artifacts Reduction by a Deep Convolutional Network, arXiv:1504.06993.
  • Blur Removal
    • Christian J. Schuler, Michael Hirsch, Stefan Harmeling, Bernhard Sch?lkopf, Learning to Deblur, arXiv:1406.7444[Paper]
    • Jian Sun, Wenfei Cao, Zongben Xu, Jean Ponce, Learning a Convolutional Neural Network for Non-uniform Motion Blur Removal, CVPR, 2015?[Paper]
  • Image Deconvolution?[Web]?[Paper]
    • Li Xu, Jimmy SJ. Ren, Ce Liu, Jiaya Jia, Deep Convolutional Neural Network for Image Deconvolution, NIPS, 2014.
  • Deep Edge-Aware Filter?[Paper]
    • Li Xu, Jimmy SJ. Ren, Qiong Yan, Renjie Liao, Jiaya Jia, Deep Edge-Aware Filters, ICML, 2015.
  • Computing the Stereo Matching Cost with a Convolutional Neural Network?[Paper]
    • Jure ?bontar, Yann LeCun, Computing the Stereo Matching Cost with a Convolutional Neural Network, CVPR, 2015.

Edge Detection

edge_detection(from Gedas Bertasius, Jianbo Shi, Lorenzo Torresani, DeepEdge: A Multi-Scale Bifurcated Deep Network for Top-Down Contour Detection, CVPR, 2015.)

  • Holistically-Nested Edge Detection?[Paper]
    • Saining Xie, Zhuowen Tu, Holistically-Nested Edge Detection, arXiv:1504.06375.
  • DeepEdge?[Paper]
    • Gedas Bertasius, Jianbo Shi, Lorenzo Torresani, DeepEdge: A Multi-Scale Bifurcated Deep Network for Top-Down Contour Detection, CVPR, 2015.
  • DeepContour?[Paper]
    • Wei Shen, Xinggang Wang, Yan Wang, Xiang Bai, Zhijiang Zhang, DeepContour: A Deep Convolutional Feature Learned by Positive-Sharing Loss for Contour Detection, CVPR, 2015.

Semantic Segmentation

semantic_segmantation(from Jifeng Dai, Kaiming He, Jian Sun, BoxSup: Exploiting Bounding Boxes to Supervise Convolutional Networks for Semantic Segmentation, arXiv:1503.01640.)

  • PASCAL VOC2012 Challenge Leaderboard (02 Dec. 2015)?VOC2012_top_rankings?(from PASCAL VOC2012?leaderboards)
  • Adelaide
    • Guosheng Lin, Chunhua Shen, Ian Reid, Anton van dan Hengel, Efficient piecewise training of deep structured models for semantic segmentation, arXiv:1504.01013.?[Paper]?(1st ranked in VOC2012)
    • Guosheng Lin, Chunhua Shen, Ian Reid, Anton van den Hengel, Deeply Learning the Messages in Message Passing Inference, arXiv:1508.02108.?[Paper]?(4th ranked in VOC2012)
  • Deep Parsing Network (DPN)
    • Ziwei Liu, Xiaoxiao Li, Ping Luo, Chen Change Loy, Xiaoou Tang, Semantic Image Segmentation via Deep Parsing Network, arXiv:1509.02634 / ICCV 2015?[Paper]?(2nd ranked in VOC 2012)
  • CentraleSuperBoundaries, INRIA?[Paper]
    • Iasonas Kokkinos, Surpassing Humans in Boundary Detection using Deep Learning, arXiv:1411.07386 (4th ranked in VOC 2012)
  • BoxSup?[Paper]
    • Jifeng Dai, Kaiming He, Jian Sun, BoxSup: Exploiting Bounding Boxes to Supervise Convolutional Networks for Semantic Segmentation, arXiv:1503.01640. (6th ranked in VOC2012)
  • POSTECH
    • Hyeonwoo Noh, Seunghoon Hong, Bohyung Han, Learning Deconvolution Network for Semantic Segmentation, arXiv:1505.04366.?[Paper]?(7th ranked in VOC2012)
    • Seunghoon Hong, Hyeonwoo Noh, Bohyung Han, Decoupled Deep Neural Network for Semi-supervised Semantic Segmentation, arXiv:1506.04924.?[Paper]
  • Conditional Random Fields as Recurrent Neural Networks?[Paper]
    • Shuai Zheng, Sadeep Jayasumana, Bernardino Romera-Paredes, Vibhav Vineet, Zhizhong Su, Dalong Du, Chang Huang, Philip H. S. Torr, Conditional Random Fields as Recurrent Neural Networks, arXiv:1502.03240. (8th ranked in VOC2012)
  • DeepLab
    • Liang-Chieh Chen, George Papandreou, Kevin Murphy, Alan L. Yuille, Weakly-and semi-supervised learning of a DCNN for semantic image segmentation, arXiv:1502.02734.?[Paper]?(9th ranked in VOC2012)
  • Zoom-out?[Paper]
    • Mohammadreza Mostajabi, Payman Yadollahpour, Gregory Shakhnarovich, Feedforward Semantic Segmentation With Zoom-Out Features, CVPR, 2015
  • Joint Calibration?[Paper]
    • Holger Caesar, Jasper Uijlings, Vittorio Ferrari, Joint Calibration for Semantic Segmentation, arXiv:1507.01581.
  • Fully Convolutional Networks for Semantic Segmentation?[Paper-CVPR15]?[Paper-arXiv15]
    • Jonathan Long, Evan Shelhamer, Trevor Darrell, Fully Convolutional Networks for Semantic Segmentation, CVPR, 2015.
  • Hypercolumn?[Paper]
    • Bharath Hariharan, Pablo Arbelaez, Ross Girshick, Jitendra Malik, Hypercolumns for Object Segmentation and Fine-Grained Localization, CVPR, 2015.
  • Deep Hierarchical Parsing
    • Abhishek Sharma, Oncel Tuzel, David W. Jacobs, Deep Hierarchical Parsing for Semantic Segmentation, CVPR, 2015.?[Paper]
  • Learning Hierarchical Features for Scene Labeling?[Paper-ICML12]?[Paper-PAMI13]
    • Clement Farabet, Camille Couprie, Laurent Najman, Yann LeCun, Scene Parsing with Multiscale Feature Learning, Purity Trees, and Optimal Covers, ICML, 2012.
    • Clement Farabet, Camille Couprie, Laurent Najman, Yann LeCun, Learning Hierarchical Features for Scene Labeling, PAMI, 2013.
  • University of Cambridge?[Web]
    • Vijay Badrinarayanan, Alex Kendall and Roberto Cipolla "SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation." arXiv preprint arXiv:1511.00561, 2015.?[Paper]
    • Alex Kendall, Vijay Badrinarayanan and Roberto Cipolla "Bayesian SegNet: Model Uncertainty in Deep Convolutional Encoder-Decoder Architectures for Scene Understanding." arXiv preprint arXiv:1511.02680, 2015.?[Paper]

Visual Attention and Saliency

saliency(from Nian Liu, Junwei Han, Dingwen Zhang, Shifeng Wen, Tianming Liu, Predicting Eye Fixations using Convolutional Neural Networks, CVPR, 2015.)

  • Mr-CNN?[Paper]
    • Nian Liu, Junwei Han, Dingwen Zhang, Shifeng Wen, Tianming Liu, Predicting Eye Fixations using Convolutional Neural Networks, CVPR, 2015.
  • Learning a Sequential Search for Landmarks?[Paper]
    • Saurabh Singh, Derek Hoiem, David Forsyth, Learning a Sequential Search for Landmarks, CVPR, 2015.
  • Multiple Object Recognition with Visual Attention?[Paper]
    • Jimmy Lei Ba, Volodymyr Mnih, Koray Kavukcuoglu, Multiple Object Recognition with Visual Attention, ICLR, 2015.
  • Recurrent Models of Visual Attention?[Paper]
    • Volodymyr Mnih, Nicolas Heess, Alex Graves, Koray Kavukcuoglu, Recurrent Models of Visual Attention, NIPS, 2014.

Object Recognition

  • Weakly-supervised learning with convolutional neural networks?[Paper]
    • Maxime Oquab, Leon Bottou, Ivan Laptev, Josef Sivic, Is object localization for free? – Weakly-supervised learning with convolutional neural networks, CVPR, 2015.
  • FV-CNN?[Paper]
    • Mircea Cimpoi, Subhransu Maji, Andrea Vedaldi, Deep Filter Banks for Texture Recognition and Segmentation, CVPR, 2015.

Understanding CNN

understanding(from Aravindh Mahendran, Andrea Vedaldi, Understanding Deep Image Representations by Inverting Them, CVPR, 2015.)

  • Equivariance and Equivalence of Representations?[Paper]
    • Karel Lenc, Andrea Vedaldi, Understanding image representations by measuring their equivariance and equivalence, CVPR, 2015.
  • Deep Neural Networks Are Easily Fooled?[Paper]
    • Anh Nguyen, Jason Yosinski, Jeff Clune, Deep Neural Networks are Easily Fooled:High Confidence Predictions for Unrecognizable Images, CVPR, 2015.
  • Understanding Deep Image Representations by Inverting Them?[Paper]
    • Aravindh Mahendran, Andrea Vedaldi, Understanding Deep Image Representations by Inverting Them, CVPR, 2015.
  • Object Detectors Emerge in Deep Scene CNNs?[Paper]
    • Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, Antonio Torralba, Object Detectors Emerge in Deep Scene CNNs, ICLR, 2015.
  • Inverting Convolutional Networks with Convolutional Networks
    • Alexey Dosovitskiy, Thomas Brox, Inverting Convolutional Networks with Convolutional Networks, arXiv, 2015.?[Paper]
  • Visualizing and Understanding CNN
    • Matthrew Zeiler, Rob Fergus, Visualizing and Understanding Convolutional Networks, ECCV, 2014.?[Paper]

Image and Language

Image Captioning

image_captioning(from Andrej Karpathy, Li Fei-Fei, Deep Visual-Semantic Alignments for Generating Image Description, CVPR, 2015.)

  • UCLA / Baidu?[Paper]
    • Junhua Mao, Wei Xu, Yi Yang, Jiang Wang, Alan L. Yuille, Explain Images with Multimodal Recurrent Neural Networks, arXiv:1410.1090.
  • Toronto?[Paper]
    • Ryan Kiros, Ruslan Salakhutdinov, Richard S. Zemel, Unifying Visual-Semantic Embeddings with Multimodal Neural Language Models, arXiv:1411.2539.
  • Berkeley?[Paper]
    • Jeff Donahue, Lisa Anne Hendricks, Sergio Guadarrama, Marcus Rohrbach, Subhashini Venugopalan, Kate Saenko, Trevor Darrell, Long-term Recurrent Convolutional Networks for Visual Recognition and Description, arXiv:1411.4389.
  • Google?[Paper]
    • Oriol Vinyals, Alexander Toshev, Samy Bengio, Dumitru Erhan, Show and Tell: A Neural Image Caption Generator, arXiv:1411.4555.
  • Stanford?[Web]?[Paper]
    • Andrej Karpathy, Li Fei-Fei, Deep Visual-Semantic Alignments for Generating Image Description, CVPR, 2015.
  • UML / UT?[Paper]
    • Subhashini Venugopalan, Huijuan Xu, Jeff Donahue, Marcus Rohrbach, Raymond Mooney, Kate Saenko, Translating Videos to Natural Language Using Deep Recurrent Neural Networks, NAACL-HLT, 2015.
  • CMU / Microsoft?[Paper-arXiv]?[Paper-CVPR]
    • Xinlei Chen, C. Lawrence Zitnick, Learning a Recurrent Visual Representation for Image Caption Generation, arXiv:1411.5654.
    • Xinlei Chen, C. Lawrence Zitnick, Mind’s Eye: A Recurrent Visual Representation for Image Caption Generation, CVPR 2015
  • Microsoft?[Paper]
    • Hao Fang, Saurabh Gupta, Forrest Iandola, Rupesh Srivastava, Li Deng, Piotr Dollár, Jianfeng Gao, Xiaodong He, Margaret Mitchell, John C. Platt, C. Lawrence Zitnick, Geoffrey Zweig, From Captions to Visual Concepts and Back, CVPR, 2015.
  • Univ. Montreal / Univ. Toronto [Web] [Paper]
    • Kelvin Xu, Jimmy Lei Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Ruslan Salakhutdinov, Richard S. Zemel, Yoshua Bengio, Show, Attend, and Tell: Neural Image Caption Generation with Visual Attention, arXiv:1502.03044 / ICML 2015
  • Idiap / EPFL / Facebook [Paper]
    • Remi Lebret, Pedro O. Pinheiro, Ronan Collobert, Phrase-based Image Captioning, arXiv:1502.03671 / ICML 2015
  • UCLA / Baidu [Paper]
    • Junhua Mao, Wei Xu, Yi Yang, Jiang Wang, Zhiheng Huang, Alan L. Yuille, Learning like a Child: Fast Novel Visual Concept Learning from Sentence Descriptions of Images, arXiv:1504.06692
  • MS + Berkeley
    • Jacob Devlin, Saurabh Gupta, Ross Girshick, Margaret Mitchell, C. Lawrence Zitnick, Exploring Nearest Neighbor Approaches for Image Captioning, arXiv:1505.04467 [Paper]
    • Jacob Devlin, Hao Cheng, Hao Fang, Saurabh Gupta, Li Deng, Xiaodong He, Geoffrey Zweig, Margaret Mitchell, Language Models for Image Captioning: The Quirks and What Works, arXiv:1505.01809 [Paper]
  • Adelaide [Paper]
    • Qi Wu, Chunhua Shen, Anton van den Hengel, Lingqiao Liu, Anthony Dick, Image Captioning with an Intermediate Attributes Layer, arXiv:1506.01144
  • Tilburg [Paper]
    • Grzegorz Chrupala, Akos Kadar, Afra Alishahi, Learning language through pictures, arXiv:1506.03694
  • Univ. Montreal [Paper]
    • Kyunghyun Cho, Aaron Courville, Yoshua Bengio, Describing Multimedia Content using Attention-based Encoder-Decoder Networks, arXiv:1507.01053
  • Cornell [Paper]
    • Jack Hessel, Nicolas Savva, Michael J. Wilber, Image Representations and New Domains in Neural Image Captioning, arXiv:1508.02091

Video Captioning

  • Berkeley?[Web]?[Paper]
    • Jeff Donahue, Lisa Anne Hendricks, Sergio Guadarrama, Marcus Rohrbach, Subhashini Venugopalan, Kate Saenko, Trevor Darrell, Long-term Recurrent Convolutional Networks for Visual Recognition and Description, CVPR, 2015.
  • UT / UML / Berkeley?[Paper]
    • Subhashini Venugopalan, Huijuan Xu, Jeff Donahue, Marcus Rohrbach, Raymond Mooney, Kate Saenko, Translating Videos to Natural Language Using Deep Recurrent Neural Networks, arXiv:1412.4729.
  • Microsoft?[Paper]
    • Yingwei Pan, Tao Mei, Ting Yao, Houqiang Li, Yong Rui, Joint Modeling Embedding and Translation to Bridge Video and Language, arXiv:1505.01861.
  • UT / Berkeley / UML?[Paper]
    • Subhashini Venugopalan, Marcus Rohrbach, Jeff Donahue, Raymond Mooney, Trevor Darrell, Kate Saenko, Sequence to Sequence--Video to Text, arXiv:1505.00487.
  • Univ. Montreal / Univ. Sherbrooke [Paper]
    • Li Yao, Atousa Torabi, Kyunghyun Cho, Nicolas Ballas, Christopher Pal, Hugo Larochelle, Aaron Courville, Describing Videos by Exploiting Temporal Structure, arXiv:1502.08029
  • MPI / Berkeley [Paper]
    • Anna Rohrbach, Marcus Rohrbach, Bernt Schiele, The Long-Short Story of Movie Description, arXiv:1506.01698
  • Univ. Toronto / MIT [Paper]
    • Yukun Zhu, Ryan Kiros, Richard Zemel, Ruslan Salakhutdinov, Raquel Urtasun, Antonio Torralba, Sanja Fidler, Aligning Books and Movies: Towards Story-like Visual Explanations by Watching Movies and Reading Books, arXiv:1506.06724
  • Univ. Montreal [Paper]
    • Kyunghyun Cho, Aaron Courville, Yoshua Bengio, Describing Multimedia Content using Attention-based Encoder-Decoder Networks, arXiv:1507.01053

Question Answering

question_answering(from Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Margaret Mitchell, Dhruv Batra, C. Lawrence Zitnick, Devi Parikh, VQA: Visual Question Answering, CVPR, 2015 SUNw:Scene Understanding workshop)

  • Virginia Tech / MSR?[Web]?[Paper]
    • Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Margaret Mitchell, Dhruv Batra, C. Lawrence Zitnick, Devi Parikh, VQA: Visual Question Answering, CVPR, 2015 SUNw:Scene Understanding workshop.
  • MPI / Berkeley?[Web]?[Paper]
    • Mateusz Malinowski, Marcus Rohrbach, Mario Fritz, Ask Your Neurons: A Neural-based Approach to Answering Questions about Images, arXiv:1505.01121.
  • Toronto?[Paper]?[Dataset]
    • Mengye Ren, Ryan Kiros, Richard Zemel, Image Question Answering: A Visual Semantic Embedding Model and a New Dataset, arXiv:1505.02074 / ICML 2015 deep learning workshop.
  • Baidu / UCLA?[Paper]?[Dataset]
    • Hauyuan Gao, Junhua Mao, Jie Zhou, Zhiheng Huang, Lei Wang, Wei Xu, Are You Talking to a Machine? Dataset and Methods for Multilingual Image Question Answering, arXiv:1505.05612.

Other Topics

  • Surface Normal Estimation?[Paper]
    • Xiaolong Wang, David F. Fouhey, Abhinav Gupta, Designing Deep Networks for Surface Normal Estimation, CVPR, 2015.
  • Action Detection?[Paper]
    • Georgia Gkioxari, Jitendra Malik, Finding Action Tubes, CVPR, 2015.
  • Crowd Counting?[Paper]
    • Cong Zhang, Hongsheng Li, Xiaogang Wang, Xiaokang Yang, Cross-scene Crowd Counting via Deep Convolutional Neural Networks, CVPR, 2015.
  • 3D Shape Retrieval?[Paper]
    • Fang Wang, Le Kang, Yi Li, Sketch-based 3D Shape Retrieval using Convolutional Neural Networks, CVPR, 2015.
  • Generate image?[Paper]
    • Alexey Dosovitskiy, Jost Tobias Springenberg, Thomas Brox, Learning to Generate Chairs with Convolutional Neural Networks, CVPR, 2015.
  • Generate Image with Adversarial Network
    • Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, Yoshua Bengio, Generative Adversarial Networks, NIPS, 2014.?[Paper]
    • Emily Denton, Soumith Chintala, Arthur Szlam, Rob Fergus, Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks, NIPS, 2015.?[Paper]
  • Artistic Style?[Paper]?[Code]
    • Leon A. Gatys, Alexander S. Ecker, Matthias Bethge, A Neural Algorithm of Artistic Style.
  • Human Gaze Estimation
    • Xucong Zhang, Yusuke Sugano, Mario Fritz, Andreas Bulling, Appearance-Based Gaze Estimation in the Wild, CVPR, 2015.?[Paper]?[Website]

Courses

  • Deep Vision
    • [Stanford]?CS231n: Convolutional Neural Networks for Visual Recognition
    • [CUHK]?ELEG 5040: Advanced Topics in Signal Processing(Introduction to Deep Learning)
  • More Deep Learning
    • [Stanford]?CS224d: Deep Learning for Natural Language Processing
    • [Oxford]?Deep Learning by Prof. Nando de Freitas
    • [NYU]?Deep Learning by Prof. Yann LeCun

Books

  • Free Online Books
    • Deep Learning by Yoshua Bengio, Ian Goodfellow and Aaron Courville
    • Neural Networks and Deep Learning by Michael Nielsen
    • Deep Learning Tutorial by LISA lab, University of Montreal

Videos

  • Talks
    • Deep Learning, Self-Taught Learning and Unsupervised Feature Learning By Andrew Ng
    • Recent Developments in Deep Learning By Geoff Hinton
    • The Unreasonable Effectiveness of Deep Learning by Yann LeCun
    • Deep Learning of Representations by Yoshua bengio
  • Courses
    • Deep Learning Course – Nando de Freitas@Oxford

Software

Framework

  • Torch7: Deep learning library in Lua, used by Facebook and Google Deepmind?[Web]
  • Caffe: Deep learning framework by the BVLC?[Web]
  • Theano: Mathematical library in Python, maintained by LISA lab?[Web]
    • Theano-based deep learning libraries:?Pylearn2,?Blocks,?Keras,?Lasagne
  • MatConvNet: CNNs for MATLAB?[Web]

Applications

  • Adversarial Training
    • Code and hyperparameters for the paper "Generative Adversarial Networks"?[Web]
  • Understanding and Visualizing
    • Source code for "Understanding Deep Image Representations by Inverting Them," CVPR, 2015.?[Web]
  • Semantic Segmentation
    • Source code for the paper "Rich feature hierarchies for accurate object detection and semantic segmentation," CVPR, 2014.?[Web]
    • Source code for the paper "Fully Convolutional Networks for Semantic Segmentation," CVPR, 2015.?[Web]
  • Super-Resolution
    • Image Super-Resolution for Anime-Style-Art?[Web]
  • Edge Detection
    • Source code for the paper "DeepContour: A Deep Convolutional Feature Learned by Positive-Sharing Loss for Contour Detection," CVPR, 2015.?[Web]

Tutorials

  • [CVPR 2014]?Tutorial on Deep Learning in Computer Vision
  • [CVPR 2015]?Applied Deep Learning for Computer Vision with Torch

Blogs

  • Deep down the rabbit hole: CVPR 2015 and beyond@Tombone's Computer Vision Blog
  • CVPR recap and where we're going@Zoya Bylinskii (MIT PhD Student)'s Blog
  • Facebook's AI Painting@Wired
  • Inceptionism: Going Deeper into Neural Networks@Google Research

本文來自互聯網用戶投稿,該文觀點僅代表作者本人,不代表本站立場。本站僅提供信息存儲空間服務,不擁有所有權,不承擔相關法律責任。
如若轉載,請注明出處:http://www.pswp.cn/news/247154.shtml
繁體地址,請注明出處:http://hk.pswp.cn/news/247154.shtml
英文地址,請注明出處:http://en.pswp.cn/news/247154.shtml

如若內容造成侵權/違法違規/事實不符,請聯系多彩編程網進行投訴反饋email:809451989@qq.com,一經查實,立即刪除!

相關文章

GitHub 新出的 Actions 是什么? 用他做自動測試?

體驗分享 本文一個嘗鮮的體驗分享, 并沒有太復雜的技巧, 做了一個最少代碼的例子展示, 讓每個人都可以把action用起來, 如果路過的大牛有高級技巧請留言分享, 我會補充. 下面正文開始. 是什么? 是一個免費的操作系統容器(Linux/Windows/macOS), 我們可以讓他預裝開發環境(node…

caffe框架翻譯-理解(轉載)

本文轉自: http://dirlt.com/caffe.html http://blog.csdn.net/songyu0120/article/details/468170851 caffe http://caffe.berkeleyvision.org/ 1.1 setup 安裝需要下面這些組件。這些組件都可以通過apt-get獲得。 libgoogle-glog-dev # gloglibgflags-dev # gfla…

賈揚清分享_深度學習框架caffe

本文轉自: http://www.datakit.cn/blog/2015/06/12/online_meet_up_with_yangqing_jia.html http://www.ifight.me/187/ Caffe是一個清晰而高效的深度學習框架,其作者是博士畢業于UC Berkeley的 賈揚清,目前在Google工作。本文是根據機器學習…

iOS多線程理解

在iOS開發中,線程的創建與管理已經被Apple進行了很好的封裝,但是在開發者實際開發中會濫用GCD,導致整個代碼混亂不堪,因此在這里需要對iOS開發中的多線程開發進行整理。 1. 主線程完成耗時操作,會導致UI卡頓,因此耗時…

Java生鮮電商平臺-SpringCloud微服務架構中分布式事務解決方案

Java生鮮電商平臺-SpringCloud微服務架構中分布式事務解決方案 說明:Java生鮮電商平臺中由于采用了微服務架構進行業務的處理,買家,賣家,配送,銷售,供應商等進行服務化,但是不可避免存在分布式事…

批量提取 caffe 特征 (python, C++, Matlab)(待續)

本文參考如下: Instant Recognition with Caffe Extracting Features Caffe Python特征提取 caffe 練習4 —-利用python批量抽取caffe計算得到的特征——by 香蕉麥樂迪 caffe 練習3 用caffe提供的C函數批量抽取圖像特征——by 香蕉麥樂迪 caffe python批量抽…

iOS單例初步理解

iOS單例初步理解 在iOS開發中,系統自帶的框架中使用了很多單例,非常方便用戶(開發者,使用比如[NSApplication sharedApplication] 等),在實際的開發中,有時候也需要設計單例對象,為…

python面向對象之類的成員

面向對象之類的成員 細分類的組成成員 類大致分為兩塊區域: 第一部分:靜態字段 第二部分:動態方法 class Animal:type_name "動物類" # 靜態變量(靜態字段)__feature "活的" # 私有靜態變量…

python元類、反射及雙線方法

元類、反射及雙線方法 元類 print(type(abc)) print(type(True)) print(type(100)) print(type([1, 2, 3])) print(type({name: 太白金星})) print(type((1,2,3))) print(type(object))class A:passprint(isinstance(object,type)) print(isinstance(A, type)) type元類是獲取該…

iOS中的多線程一般使用場景

在IOS開發中為提高程序的運行效率會將比較耗時的操作放在子線程中執行,iOS系統進程默認啟動一個主線程,用來響應用戶的手勢操作以及UI刷新,因此主線程又叫做UI線程。 前面的Blog說明了NSThread以及GCD處理并發線程以及線程安全(線…

iOS中如何優化Cell中圖片的下載性能

在iOS開發中使用最為常見的是UITableView,其中UITabelViewCell中下載圖片,會影響用戶下拉刷新UI,導致卡頓,用戶體驗不好,在這篇blog中,我將以一個例子來說明如何優化UITableView下載圖片 1.使用懶加載方式&#xff0c…

【Yoshua Bengio 親自解答】機器學習 81 個問題及答案(最全收錄)

本文轉自:http://mp.weixin.qq.com/s?__bizMzI3MTA0MTk1MA&mid401958262&idx1&sn707f228cf5779a31f0933af903516ba6&scene1&srcid0121zzdeFPtgoRoEviZ3LZDG#rd 譯者:張巨巖 王婉婷 李宏菲 戴秋池 這是 Quora 的最新節目&#xf…

Java生鮮電商平臺-SpringCloud微服務架構中網絡請求性能優化與源碼解析

Java生鮮電商平臺-SpringCloud微服務架構中網絡請求性能優化與源碼解析 說明:Java生鮮電商平臺中,由于服務進行了拆分,很多的業務服務導致了請求的網絡延遲與性能消耗,對應的這些問題,我們應該如何進行網絡請求的優化與…

XCode7 創建framework

1.新建一個靜態庫工程. file→ new→ project, 彈出框中選擇iOS→ framework & library中的cocoa touch static library.點擊Next,輸入product name: TestFramework, 點擊Next→ 點擊Create. 2.刪除向導所生成工程中的Target. 點擊工程名→ 點擊TARGETS → 右鍵Delete. …

基礎js逆向練習-登錄密碼破解(js逆向)

練習平臺:逆向賬號密碼 https://login1.scrape.center/ 直接打開平臺,輸入密碼賬號,抓包找到加密的參數攜帶的位置,這邊我們找到的是一個叫token的加密參數,這個參數的攜帶是一個密文 我們首先考慮一下搜索這個加密的…

python之socket

socket套接字 什么叫socket socket是處于應用層與傳輸層之間的抽象層,他是一組操作起來非常簡單的接口(接受數據)此接口接受數據之后,交由操作系統.socket在python中就是一個模塊. socket兩個分類 基于文件類型的套接字家族 套接字家族的名字:AF_UNIX unix一切皆文件…

iOS----JSON解析

在iOS開發中與服務器進行數據交互操作,操作過程中使用最為常見的格式為JSON與XML,其中JSON較為清量,因此本篇blog就講解一下如何在iOS中進行JSON解析。 1.建立HTTP請求 (1)創建URL NSString *URLStr [NSString stringWithFormat:”http:/…

VS中每次改代碼后運行程序不更新,只有重新編譯才生效。

解決方法:將項目移除解決方案,再重新添加進來,即添加->現有項目->選擇.vcxproj文件,即可解決。 轉載于:https://www.cnblogs.com/Gregg/p/11358711.html

socket補充:通信循環、鏈接循環、遠程操作及黏包現象

socket補充:通信循環、鏈接循環、遠程操作及黏包現象 socket通信循環 server端: import socketphone socket.socket(socket.AF_INET,socket.SOCK_STREAM)phone.bind((127.0.0.1,8080))phone.listen(5)conn, client_addr phone.accept() print(conn, cl…