A 統計已測試設備
模擬:記錄當前已測試設備數量
class Solution {
public:int countTestedDevices(vector<int> &batteryPercentages) {int res = 0;int s = 0;for (auto x: batteryPercentages) {if (x - s > 0) {res++;s++;}}return res;}
};
B 雙模冪運算
快速冪
class Solution {
public:int fpow(int x, int n, int mod) {// x^n%modint res = 1;for (int e = x; n; e = e * e % mod, n >>= 1)if (n & 1)res = res * e % mod;return res;}vector<int> getGoodIndices(vector<vector<int>> &variables, int target) {vector<int> res;for (int i = 0; i < variables.size(); i++)if (fpow(fpow(variables[i][0], variables[i][1], 10), variables[i][2], variables[i][3]) == target)res.push_back(i);return res;}
};
C 統計最大元素出現至少 K 次的子數組
滑動窗口:枚舉滑窗的左邊界 l l l,找到滿足條件的最小右邊界 r r r ,則左邊界為 l l l 的滿足條件的子數組數目為 n u m s . s i z e ( ) ? r nums.size()-r nums.size()?r
class Solution {
public:long long countSubarrays(vector<int> &nums, int k) {int mx = *max_element(nums.begin(), nums.end());int n = nums.size();long long res = 0;int cnt = 0;for (int l = 0, r = -1; l < n;) {while (cnt < k && r + 1 < n)if (nums[++r] == mx)cnt++;if (cnt < k)break;res += n - r;if (nums[l++] == mx)cnt--;}return res;}
};
D 統計好分割方案的數目
計數:因為相同數字必須在一個子數組中,所以可以預先求出 n u m s nums nums 按要求最多可以劃分成的子數組數目 c n t cnt cnt,原數組好分割方案數目等于 c n t cnt cnt 個互不相同的數形成的數組的好分割方案數目,即 2 c n t ? 1 2^{cnt-1} 2cnt?1
class Solution {
public:int numberOfGoodPartitions(vector<int> &nums) {int n = nums.size();unordered_map<int, int> r;//記錄每個數出現的最右小標for (int i = 0; i < n; i++)r[nums[i]] = i;int cnt = 0;//按要求最多可以劃分成的子數組數目for (int i = 0, right = r[nums[0]]; i < n;) {if (i != right) {right = max(right, r[nums[i++]]);} else {cnt++;if (i == n - 1)break;right = r[nums[++i]];}}int mod = 1e9 + 7;int res = 1;for (int i = 0; i < cnt - 1; i++)res = res * 2 % mod;return (res + mod) % mod;}
};