一、五種算法簡介
1、蜣螂優化算法DBO
2、鯨魚優化算法WOA
3、灰狼優化算法GWO
4、粒子群優化算法PSO
5、遺傳算法GA
二、5種算法求解23個函數
(1)23個函數簡介
參考文獻:
[1] Yao X, Liu Y, Lin G M. Evolutionary programming made faster[J]. IEEE transactions on evolutionary computation, 1999, 3(2):82-102.
(2)部分python代碼
from FunInfo import Get_Functions_details from WOA import WOA from GWO import GWO from PSO import PSO from GA import GA from DBO import DBO import matplotlib.pyplot as plt from func_plot import func_plot plt.rcParams['font.sans-serif']=['Microsoft YaHei'] #主程序 function_name =8 #測試函數1-23 SearchAgents_no = 50#種群大小 Max_iter = 100#迭代次數 lb,ub,dim,fobj=Get_Functions_details(function_name)#獲取問題信息 BestX1,BestF1,curve1 = WOA(SearchAgents_no, Max_iter,lb,ub,dim,fobj)#問題求解 BestX2,BestF2,curve2 = GWO(SearchAgents_no, Max_iter,lb,ub,dim,fobj)#問題求解 BestX3,BestF3,curve3 = PSO(SearchAgents_no, Max_iter,lb,ub,dim,fobj)#問題求解 BestX4,BestF4,curve4 = GA(SearchAgents_no, Max_iter,lb,ub,dim,fobj)#問題求解 BestX5,BestF5,curve5 = DBO(SearchAgents_no, Max_iter,lb,ub,dim,fobj)#問題求解 #畫函數圖 func_plot(lb,ub,dim,fobj,function_name)#畫函數圖 #畫收斂曲線圖 Labelstr=['WOA','GWO','PSO','GA','DBO'] Colorstr=['r','g','b','k','c'] if BestF1>0:plt.semilogy(curve1,color=Colorstr[0],linewidth=2,label=Labelstr[0])plt.semilogy(curve2,color=Colorstr[1],linewidth=2,label=Labelstr[1])plt.semilogy(curve3,color=Colorstr[2],linewidth=2,label=Labelstr[2])plt.semilogy(curve4,color=Colorstr[3],linewidth=2,label=Labelstr[3])plt.semilogy(curve5,color=Colorstr[4],linewidth=2,label=Labelstr[4]) else:plt.plot(curve1,color=Colorstr[0],linewidth=2,label=Labelstr[0])plt.plot(curve2,color=Colorstr[1],linewidth=2,label=Labelstr[1])plt.plot(curve3,color=Colorstr[2],linewidth=2,label=Labelstr[2])plt.plot(curve4,color=Colorstr[3],linewidth=2,label=Labelstr[3])plt.plot(curve5,color=Colorstr[4],linewidth=2,label=Labelstr[4])plt.xlabel("Iteration") plt.ylabel("Fitness") plt.xlim(0,Max_iter) plt.title("F"+str(function_name)) plt.legend() plt.savefig(str(function_name)+'.png') plt.show()