Jordan型矩陣
2023年11月3日
#algebra
文章目錄
- Jordan型矩陣
- 1. 代數重數與幾何重數
- 2. Jordan塊與Jordan標準型
- 2.1 最小多項式與Jordan標準型
- 2.2 兩類重要矩陣
- 3. 矩陣的Jordan分解
- 3.1 Jordan分解的應用
- 下鏈
1. 代數重數與幾何重數
在對向量做線性變換時,向量空間的某個向量的方向不發生改變,而只是在其方向上進行拉伸,則該向量是線性變換的特征向量,其在變換中被拉伸的倍數為該特征向量的特征值(特征根)。
矩陣的相同特征值有其對應的代數重數與幾何重數,相同特征值的代數重數就是相同特征值的個數,幾何重數就是相同特征值所對應特征向量的個數。顯然,特征向量的拉伸量可能相同,即代數重數大于等于幾何重數,也就是多個相同特征值可能對應一個特征向量。也可以說,對同一個特征值,可能有多個特征向量,而該特征值的代數重數大于等于特征向量的個數。
如果每個相同的特征值都對應不同的特征向量,則代數重數等于幾何重數。
對于 n × n n\times n n×n 矩陣 A A A,有 l l l 個特征根, l < n l\lt n l<n 且第 i i i 個特征根 λ i \lambda_i λi? 的代數重數為 σ i \sigma_i σi? 、幾何重數為 α i \alpha_i αi?
det ? ( λ I n ? A ) = ( λ ? λ 1 ) σ 1 ( λ ? λ 2 ) σ 2 ? ( λ ? λ l ) σ l \det (\lambda I_n-A)=(\lambda-\lambda_1)^{\sigma_1}(\lambda-\lambda_2)^{\sigma_2}\cdots(\lambda-\lambda_l)^{\sigma_l} det(λIn??A)=(λ?λ1?)σ1?(λ?λ2?)σ2??(λ?λl?)σl?
第 i i i個特征根的幾何重數計算如下:
α i = n ? rank ( λ i I n ? A ) \alpha_i=n-\text{rank}(\lambda_iI_n-A) αi?=n?rank(λi?In??A)
幾何重數(零化度)對應著有幾個線性無關的特征向量擁有當前的特征值。
在Jordan標準型中,幾何重數對應著當前特征值擁有幾個Jordan快。
若代數重數等于幾何重數,該特征值為 半單的。
若代數重數大于幾何重數,該特征值為 虧損的。
顯然,代數重數為 1 {1} 1 的特征值一定時半單的;不同特征值對應的特征向量是線性無關的。每個特征值都是半單的矩陣(有完備的特征向量系)等價于可對角化。
存在虧損的特征值的矩陣稱為虧損矩陣,等價于不可對角化。
2. Jordan塊與Jordan標準型
舉例,對代數重數為 σ i = 5 \sigma_i=5 σi?=5 、幾何重數為 α i = 2 \alpha_i=2 αi?=2 的特征根 λ i \lambda_i λi?,有兩個Jordan快,設存在一個三階和一個兩階的Jordan塊:
J i = [ λ i 1 0 0 0 0 λ i 1 0 0 0 0 λ i 0 0 0 0 0 λ i 1 0 0 0 0 λ i ] = diag ( J 3 ( λ i ) , J 2 ( λ i ) ) J_{i}= \begin{bmatrix} \lambda_i&1&0&0&0\\ 0&\lambda_i&1&0&0\\ 0&0&\lambda_i&0&0\\ 0&0&0&\lambda_i&1\\ 0&0&0&0&\lambda_i \end{bmatrix}=\text{diag}(J_3(\lambda_i),J_2(\lambda_i)) Ji?= ?λi?0000?1λi?000?01λi?00?000λi?0?0001λi?? ?=diag(J3?(λi?),J2?(λi?))
Jordan塊的順序可以交換。知道特征值的代數重數和幾何重數,還需要知道特征值對應的每階Jordan塊的個數,才能寫出Jordan標準型。
可以通過冪零矩陣確定 λ i \lambda_i λi? 對應的兩個Jordan快各有幾階,如其中 j j j 階Jordan塊的個數為:
r j + 1 + r j ? 1 ? 2 r j r_{j+1}+r_{j-1}-2r_j rj+1?+rj?1??2rj?
r j = rank ( λ i I ? A ) j r_j=\text{rank}(\lambda_iI-A)^j rj?=rank(λi?I?A)j
r 0 = rank ( λ i I ? A ) 0 = n r_0=\text{rank}(\lambda_iI-A)^0=n r0?=rank(λi?I?A)0=n
矩陣的Jordan標準型
J = diag ( J n 1 , J n 2 , ? , J n k ) , n 1 + n 2 + ? + n k = n J=\text{diag}(J_{n_1},J_{n_2},\cdots,J_{n_k}),~n_1+n_2+\cdots+n_k=n J=diag(Jn1??,Jn2??,?,Jnk??),?n1?+n2?+?+nk?=n
Jordan塊的上次對角元值都為 1 {1} 1
J n i = [ λ i 1 λ i 1 ? ? λ i 1 λ i ] J_{n_i}= \begin{bmatrix} \lambda_i&1&&&\\ &\lambda_i&1&&\\ &&\ddots&\ddots&\\ &&&\lambda_i&1\\&&&&\lambda_i \end{bmatrix} Jni??= ?λi??1λi??1???λi??1λi?? ?
在這種定義下,不同Jordan塊可能對應相同特征值。求Jordan標準型步驟如下:
- 算特征值
- 算代數重數、幾何重數
- 算特征值對應階數Jordan塊的個數
[!example]-
求矩陣 A A A 的Jordan標準型
A = [ 2 0 ? 1 0 ? 1 1 0 ? 1 0 0 2 0 1 1 1 3 ] A= \begin{bmatrix} 2 & 0 & -1 & 0 \\ -1 & 1 & 0 & -1 \\ 0 & 0 & 2 & 0\\ 1 & 1 & 1 & 3 \end{bmatrix} A= ?2?101?0101??1021?0?103? ?
解:
det ? ( λ I ? A ) = ( λ ? 2 ) 4 \det ( \lambda I-A)=( \lambda-2)^4 det(λI?A)=(λ?2)4
λ 1 = λ 2 = λ 3 = λ 4 = 2 , 4 ? rank ( λ 1 I ? A ) = 2 \lambda_1= \lambda_2 = \lambda_3= \lambda_4=2 \,\,,\,\, 4- \text{rank} ( \lambda_1I-A)=2 λ1?=λ2?=λ3?=λ4?=2,4?rank(λ1?I?A)=2
2 2 2 特征值的代數重數是 4 {4} 4 ,幾何重數是 2 {2} 2 ,有兩個Jordan塊,可能是一個三階和一個一階的,也可能是兩個二階的。
r 0 = 4 r 1 = rank ( λ 1 I ? A ) = 2 r 2 = rank ( λ 1 I ? A ) 2 = 0 r 3 = rank ( λ 1 I ? A ) 3 = 0 \begin{align*} r_0=&4 \\ \\ r_1=& \text{rank}( \lambda_1I-A)=2 \\ \\ r_2=& \text{rank} ( \lambda_1I-A)^2=0 \\ \\ r_3=& \text{rank} ( \lambda_1I-A)^3=0 \\ \\ \end{align*} r0?=r1?=r2?=r3?=?4rank(λ1?I?A)=2rank(λ1?I?A)2=0rank(λ1?I?A)3=0?
2 2 2 特征值對應的一階Jordan塊個數
r 2 + r 0 ? 2 r 1 = 0 r_2+r_0-2r_1=0 r2?+r0??2r1?=0
2 2 2 特征值對應的二階Jordan塊個數
r 3 + r 1 ? 2 r 2 = 2 r_3+r_1-2r_2=2 r3?+r1??2r2?=2
所以有兩個二階Jordan塊,Jordan標準型為
J = [ 2 1 0 0 0 2 0 0 0 0 2 1 0 0 0 2 ] J= \begin{bmatrix} 2 & 1 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 2 & 1\\ 0 & 0 & 0 & 2 \end{bmatrix} J= ?2000?1200?0020?0012? ?
Jordan塊減去特征值單位陣擁有冪零的特性:
( J n i ? λ i I n i ) n i = 0 (J_{n_i}- \lambda_iI_{n_i})^{n_i}=0 (Jni???λi?Ini??)ni?=0
2.1 最小多項式與Jordan標準型
由于一個特征值可能對應多個Jordan塊,我們選擇一個特征值的最大Jordan塊的階數,做為最小多項式中該特征值對應因子的冪次,得到最小多項式。例如
A = [ λ 1 1 0 0 0 0 λ 1 1 0 0 0 0 λ 1 0 0 0 0 0 λ 1 0 0 0 0 0 λ 2 ] A= \begin{bmatrix} \lambda_1 & 1 & 0 & 0&0 \\ 0 & \lambda_1 & 1 & 0&0 \\ 0 &0 & \lambda_1 & 0&0\\ 0 & 0& 0 & \lambda_1&0\\0 & 0& 0& 0& \lambda2 \end{bmatrix} A= ?λ1?0000?1λ1?000?01λ1?00?000λ1?0?0000λ2? ?
特征多項式為
Δ ( λ ) = det ? ( λ I ? A ) = ( λ ? λ 1 ) 4 ( λ ? λ 2 ) \Delta( \lambda)=\det( \lambda I-A)=( \lambda- \lambda_1)^4( \lambda- \lambda_2) Δ(λ)=det(λI?A)=(λ?λ1?)4(λ?λ2?)
最小多項式為
ψ ( λ ) = ( λ ? λ 1 ) 3 ( λ ? λ 2 ) \psi( \lambda)=( \lambda- \lambda_1)^3( \lambda- \lambda_2) ψ(λ)=(λ?λ1?)3(λ?λ2?)
所有相似矩陣都有相同的最小多項式。
2.2 兩類重要矩陣
一類是每個特征值代數重數與幾何重數相等的矩陣,又稱非退化矩陣或簡單矩陣、可對角化矩陣,其Jordan標準型是對角陣。
另一類是每個特征值的幾何重數都為 1 {1} 1 的矩陣,也就是一個特征值對應一個Jordan塊,各Jordan塊對應的特征值互異,又稱循環矩陣。
顯然,循環矩陣的特征多項式與最小多項式相同。
3. 矩陣的Jordan分解
對 n {n} n 階方陣 A A A,存在 n {n} n 階可逆矩陣 T T T,使得
A = T J T ? 1 A=TJT^{-1} A=TJT?1
為矩陣Jordan分解, J J J 為矩陣的Jordan標準型,若不計Jordan塊的次序,則Jordan標準型唯一。
對變換矩陣,可以寫為矩陣的集合 T = ( T 1 , T 2 , ? , T k ) T=(T_1,T_2,\cdots,T_k) T=(T1?,T2?,?,Tk?), T i T_i Ti? 為 n × n i n\times n_i n×ni? 階矩陣。
A ( T 1 , T 2 , ? , T k ) = ( T 1 , T 2 , ? , T k ) [ J n 1 ? J n k ] A(T_1,T_2,\cdots,T_k)=(T_1,T_2,\cdots,T_k) \begin{bmatrix}J_{n_1}&&\\&\ddots\\&&J_{n_k}\end{bmatrix} A(T1?,T2?,?,Tk?)=(T1?,T2?,?,Tk?) ?Jn1?????Jnk??? ?
A T i = T i J n i = ( t 1 i , t 2 i , ? , t n i i ) [ λ i 1 λ i 1 ? ? λ i 1 λ i ] AT_i=T_iJ_{n_i}=(t_1^i,t_2^i,\cdots,t_{n_i}^i) \begin{bmatrix} \lambda_i&1&&&\\ &\lambda_i&1&&\\ &&\ddots&\ddots&\\ &&&\lambda_i&1\\&&&&\lambda_i \end{bmatrix} ATi?=Ti?Jni??=(t1i?,t2i?,?,tni?i?) ?λi??1λi??1???λi??1λi?? ?
所以
{ A t 1 i = λ i t 1 i A t 2 i = λ i t 2 i + t 1 i ? A t n i i = λ i t n i i + t n i ? 1 i \begin{cases} At_1^i=\lambda_it_1^i \\ At_2^i=\lambda_it_2^i+t_1^i\\ \vdots\\ At_{n_i}^i=\lambda_it_{n_i}^i+t_{n_i-1}^i \end{cases} ? ? ??At1i?=λi?t1i?At2i?=λi?t2i?+t1i??Atni?i?=λi?tni?i?+tni??1i??
( A ? λ i I n ) t 1 i = 0 (A-\lambda_iI_n)t_1^i=0 (A?λi?In?)t1i?=0
( A ? λ i I n ) t j i = t j ? 1 i , j = 2 , 3 ? , n i (A-\lambda_iI_n)t_j^i=t_{j-1}^i,~j=2,3\cdots,n_i (A?λi?In?)tji?=tj?1i?,?j=2,3?,ni?
t 1 i , t 2 i , ? , t n i i t_1^i,t_2^i,\cdots,t_{n_i}^i t1i?,t2i?,?,tni?i? 構成一條關于 λ i \lambda_i λi?的長度為 n i n_i ni?的Jordan鏈。 t 1 i t_1^i t1i? 是鏈首,是 A A A 關于 λ i \lambda_i λi? 的一個特征向量。
鏈首滿足是特征向量,且方程組可解的要求。所以把 λ i \lambda_i λi? 對應的所有線性無關的特征向量算出來,做線性組合,作為鏈首。變換矩陣 T T T 的求解步驟如下
- 求Jordan標準型
- 算每個Jordan塊對應的Jordan鏈
若Jordan塊階數為1,直接計算特征向量
若階數大于1,先計算特征向量,利用特征向量的線性組合得到鏈首(同一特征值特征向量非零線性組合仍是特征向量)
[!example]-
A A A 的Jordan標準型
A = [ 3 0 8 3 ? 1 6 ? 2 0 ? 5 ] , J = [ ? 1 0 0 0 ? 1 1 0 0 ? 1 ] A= \begin{bmatrix} 3 & 0 & 8 \\ 3 & -1 & 6 \\ -2 & 0 & -5 \end{bmatrix} \,\,,\,\, J= \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & -1 \end{bmatrix} A= ?33?2?0?10?86?5? ?,J= ??100?0?10?01?1? ?
求出 λ 1 \lambda_1 λ1? 對應的線性無關的特征向量
x 1 = ( 2 , 0 , ? 1 ) T , x 2 = ( 0 , 1 , 0 ) T x_1=(2,0,-1)^ \mathrm T \,\,,\,\, x_2=(0,1,0)^ \mathrm T x1?=(2,0,?1)T,x2?=(0,1,0)T
對應的變換矩陣為 x 1 x_1 x1? 和 x 2 x_2 x2? 的線性組合,我們選取 x 1 x_1 x1?。對于階數為 2 {2} 2 的Jordan塊,構造 y = k 1 x 1 + k 2 x 2 y=k_1x_1+k_2x_2 y=k1?x1?+k2?x2? 使得 ( A ? λ 1 I ) Z = y (A- \lambda_1I)Z=y (A?λ1?I)Z=y 可解,即
rank ( A ? λ 1 I ) = rank ( A ? λ 1 I ∣ y ) \text{rank}(A- \lambda_1I)= \text{rank}(A- \lambda_1I\,|\,y) rank(A?λ1?I)=rank(A?λ1?I∣y)
( A ? λ 1 I ∣ y ) = [ 4 0 8 2 k 1 3 0 6 k 2 ? 2 0 ? 4 ? k 1 ] → [ 4 0 8 2 k 1 0 0 0 k 2 ? 3 k 1 / 2 0 0 0 0 ] (A- \lambda_1I\,|\,y) = \begin{bmatrix} 4 & 0 & 8 & 2k_1 \\ 3 & 0 & 6& k_2 \\ -2 & 0 & -4 &-k_1 \end{bmatrix} \to \begin{bmatrix} 4 & 0 & 8 & 2k_1 \\ 0 & 0 & 0& k_2-3k_1/2 \\ 0 & 0 &0 &0 \end{bmatrix} (A?λ1?I∣y)= ?43?2?000?86?4?2k1?k2??k1?? ?→ ?400?000?800?2k1?k2??3k1?/20? ?
需要 2 k 2 ? 3 k 1 = 0 2k_2-3k_1=0 2k2??3k1?=0 ,取 k 1 = 2 , k 2 = 3 , y = ( 4 , 3 , ? 2 ) T k_1=2 \,\,,\,\, k_2=3 \,\,,\,\, y=(4,3,-2)^ \mathrm T k1?=2,k2?=3,y=(4,3,?2)T, 解出 z = ( 1 , 0 , 0 ) T z=(1,0,0)^ \mathrm T z=(1,0,0)T,鼓變換矩陣為
T = [ 2 4 1 0 3 0 ? 1 ? 2 0 ] T= \begin{bmatrix} 2 & 4 & 1 \\ 0 & 3 & 0 \\ -1 & -2 & 0 \end{bmatrix} T= ?20?1?43?2?100? ?
3.1 Jordan分解的應用
Jordan分解用于計算初等函數在某個矩陣處的值,最簡單的情形是計算多項式函數(高次多項式),當然也可以用Cayley-Hamilton定理。
[!example]-
設矩陣
A = [ ? 1 0 1 1 2 0 ? 4 0 3 ] A= \begin{bmatrix} -1 & 0 & 1 \\ 1 & 2 & 0 \\ -4 & 0 & 3 \end{bmatrix} A= ??11?4?020?103? ?
求 A 2018 A^{2018} A2018。
解:
T ? 1 A T = J = [ 1 1 0 0 1 0 0 0 2 ] → A 2018 = T J 2018 T ? 1 \begin{align*} T^{-1}AT=J= \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix} \end{align*}\to A^{2018}=TJ^{2018}T^{-1} T?1AT=J= ?100?110?002? ??→A2018=TJ2018T?1
A 2018 = [ 1 0 0 ? 1 ? 1 1 2 1 0 ] [ 1 2018 0 0 1 0 0 0 2 2018 ] [ 1 0 0 ? 2 0 1 ? 1 1 1 ] = [ ? 4035 0 2018 4037 ? 2 2018 2 2018 2 2018 ? 2019 ? 8072 0 4037 ] \begin{align*} A^{2018}=& \begin{bmatrix} 1 & 0 & 0 \\ -1 & -1 & 1 \\ 2 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 2018 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2^{2018} \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ -2 & 0 & 1 \\ -1 & 1 & 1 \end{bmatrix} \\ \\=& \begin{bmatrix} -4035 & 0 & 2018 \\ 4037-2^{2018} & 2^{2018} & 2^{2018}-2019 \\ -8072 & 0 & 4037 \end{bmatrix} \end{align*} A2018==? ?1?12?0?11?010? ? ?100?201810?0022018? ? ?1?2?1?001?011? ? ??40354037?22018?8072?0220180?201822018?20194037? ??
Jordan分解還可以用于求解一階線性常系數微分方程組。
[! example]-
求解
{ d d t x 1 = 3 x 1 + x 2 ? 3 d d t x 2 = ? 2 x 2 + 2 x 3 d d t x 3 = ? x 1 + x 2 + 3 x 3 \begin{cases} \frac{\mathrm d }{\mathrm dt}x_1=3x_1+x_2-3 \\ \frac{\mathrm d }{\mathrm dt}x_2=-2x_2+2x_3\\ \frac{\mathrm d }{\mathrm dt}x_3=-x_1+x_2+3x_3 \end{cases} ? ? ??dtd?x1?=3x1?+x2??3dtd?x2?=?2x2?+2x3?dtd?x3?=?x1?+x2?+3x3??
解:令 x = ( x 1 , x 2 , x 3 ) T x=(x_1,x_2,x_3)^ \mathrm T x=(x1?,x2?,x3?)T ,則原方程組化為
d x d t = A x \frac{\mathrm d x}{\mathrm dt}=Ax dtdx?=Ax
令 x = T y x=Ty x=Ty,則
d y d t = T ? 1 d x d t = T ? 1 A x = T ? 1 A T y = J y \frac{\mathrm d y}{\mathrm dt}= T^{-1}\frac{\mathrm d x}{\mathrm dt}=T^{-1}Ax=T^{-1}ATy=Jy dtdy?=T?1dtdx?=T?1Ax=T?1ATy=Jy
A = [ 3 1 ? 1 ? 2 0 2 ? 1 ? 1 3 ] , J = [ 2 0 0 0 2 1 0 0 2 ] A= \begin{bmatrix} 3 & 1 & -1 \\ -2 & 0 & 2 \\ -1 & -1 & 3 \end{bmatrix} \,\,,\,\, J= \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{bmatrix} A= ?3?2?1?10?1??123? ?,J= ?200?020?012? ?
∴ J y = [ 2 y 1 2 y 2 + y 3 2 y 3 ] → y 1 ′ = 2 y 1 , y 2 ′ = 2 y 2 + y 3 , y 3 ′ = 2 y 3 \therefore Jy= \begin{bmatrix} 2y_1\\ 2y_2+y_3\\ 2y_3 \end{bmatrix}\to y_1'=2y_1 \,\,,\,\, y_2'=2y_2+y_3 \,\,,\,\, y_3'=2y_3 ∴Jy= ?2y1?2y2?+y3?2y3?? ?→y1′?=2y1?,y2′?=2y2?+y3?,y3′?=2y3?
y y y 第一第三個分量的一般解為
y 1 ( t ) = c 1 e 2 t , y 3 ( t ) = c 3 e 2 t y_1(t)=c_1e^{2t} \,\,,\,\, y_3(t)=c_3e^{2t} y1?(t)=c1?e2t,y3?(t)=c3?e2t
代入第二個分量求解得
y 2 ( t ) = ( c 2 + c 3 t ) e 2 t y_2(t)=(c_2+c_3t)e^{2t} y2?(t)=(c2?+c3?t)e2t
x = T y = [ ? e 2 t ( c 1 + c 2 + c 3 + c 3 t ) e 2 t ( c 1 + 2 c 2 + 2 c 3 t ) e 2 t ( c 2 + c 3 t ) ] , ? c 1 , c 2 , c 3 ∈ C x=Ty= \begin{bmatrix} -e^{2t}(c_1+c_2+c_3+c_3t)\\ e^{2t}(c_1+2c_2+2c_3t)\\ e^{2t}(c_2+c_3t) \end{bmatrix} \,\,,\,\, \forall c_1,c_2,c_3\in \mathbb C x=Ty= ??e2t(c1?+c2?+c3?+c3?t)e2t(c1?+2c2?+2c3?t)e2t(c2?+c3?t)? ?,?c1?,c2?,c3?∈C
下鏈
Jordan塊、Jordan標準型及矩陣的Jordan分解
矩陣論 武漢理工大學 (親測最好的矩陣論視頻)