文章目錄
- @[toc]
- 前導
- 《形式語言與自動機理論(第4版)》筆記(一)
- 《形式語言與自動機理論(第4版)》筆記(二)
- 第四章:正則表達式
- 4.1|啟示
- 4.2|正則表達式的形式定義
- 正則表達式性質
- 4.3|正則表達式與 F A FA FA等價
- 正則表達式表示的語言是正則語言
-
- 正則語言可以用正則表達式表示
- 構造與 D F A DFA DFA等價的正則表達式
- 圖上作業方法
- 預處理
- 循環操作
- 4.4|正則語言等價模型的總結
文章目錄
- @[toc]
- 前導
- 《形式語言與自動機理論(第4版)》筆記(一)
- 《形式語言與自動機理論(第4版)》筆記(二)
- 第四章:正則表達式
- 4.1|啟示
- 4.2|正則表達式的形式定義
- 正則表達式性質
- 4.3|正則表達式與 F A FA FA等價
- 正則表達式表示的語言是正則語言
- 正則語言可以用正則表達式表示
- 構造與 D F A DFA DFA等價的正則表達式
- 圖上作業方法
- 預處理
- 循環操作
- 4.4|正則語言等價模型的總結
前導
《形式語言與自動機理論(第4版)》筆記(一)
《形式語言與自動機理論(第4版)》筆記(二)
第四章:正則表達式
4.1|啟示
4.2|正則表達式的形式定義
正則表達式性質
- L ( ( r + ε ) ? ) = L ( r ? ) L((r + \varepsilon)^{*}) = L(r^{*}) L((r+ε)?)=L(r?)
- L ( ( r ? s ? ) ? ) = L ( ( r + s ) ? ) L((r^{*} s^{*})^{*}) = L((r + s)^{*}) L((r?s?)?)=L((r+s)?)
4.3|正則表達式與 F A FA FA等價
正則表達式表示的語言是正則語言
- 施歸納于正則表達式中所含運算符的個數 n n n,證明對于字母表 Σ \Sigma Σ上的任意正則表達式 x x x,存在 F A M FA \ M FA?M,使得 L ( M ) = L ( x ) L(M) = L(x) L(M)=L(x),并且 M M M恰有一個終止狀態,而且 M M M在終止狀態下不做任何移動
n = 0 n = 0 n=0時
r = ε r = \varepsilon r=ε
r = ? r = \emptyset r=?
? a ∈ Σ \forall a \in \Sigma ?a∈Σ, r = a r = a r=a
n = k + 1 n = k + 1 n=k+1時
r = r 1 + r 2 r = r_{1} + r_{2} r=r1?+r2?
- 此時 r 1 r_{1} r1?, r 2 r_{2} r2?種運算符的個數不會大于 k k k,由歸納假設,存在滿足定理要求的 ε ? N F A \varepsilon-NFA ε?NFA, M 1 = ( Q 1 , Σ , δ 1 , q 01 , { f 1 } ) M_{1} = (Q_{1} , \Sigma , \delta_{1} , q_{01} , \set{f_{1}}) M1?=(Q1?,Σ,δ1?,q01?,{f1?}), M 2 = ( Q 2 , Σ , δ 2 , q 02 , { f 2 } ) M_{2} = (Q_{2} , \Sigma , \delta_{2} , q_{02} , \set{f_{2}}) M2?=(Q2?,Σ,δ2?,q02?,{f2?}),使得 L ( M 1 ) = L ( r 1 ) L(M_{1}) = L(r_{1}) L(M1?)=L(r1?), L ( M 2 ) = L ( r 2 ) L(M_{2}) = L(r_{2}) L(M2?)=L(r2?)
- 不妨設 Q 1 ∪ Q 2 = ? Q_{1} \cup Q_{2} = \emptyset Q1?∪Q2?=?,取 q 0 q_{0} q0?, f ? Q 1 ∪ Q 2 f \notin Q_{1} \cup Q_{2} f∈/Q1?∪Q2?,令 M = ( Q 1 ∪ Q 2 ∪ { ( } q 0 , f ) , Σ , δ , q 0 , { f } ) M = (Q_{1} \cup Q_{2} \cup \set(q_{0} , f) , \Sigma , \delta , q_{0} , \set{f}) M=(Q1?∪Q2?∪{(}q0?,f),Σ,δ,q0?,{f}),其中 δ \delta δ的定義為
- δ ( q 0 , ε ) = { q 01 , q 02 } \delta(q_{0} , \varepsilon) = \set{q_{01} , q_{02}} δ(q0?,ε)={q01?,q02?}
- 對 ? q ∈ Q 1 ? { f 1 } \forall q \in Q_{1} - \set{f_{1}} ?q∈Q1??{f1?}, a ∈ Σ ∪ { ε } a \in \Sigma \cup \set{\varepsilon} a∈Σ∪{ε}, δ ( q , a ) = δ 1 ( q , a ) \delta(q , a) = \delta_{1}(q , a) δ(q,a)=δ1?(q,a),對 ? q ∈ Q 2 ? { f 1 } \forall q \in Q_{2} - \set{f_{1}} ?q∈Q2??{f1?}, a ∈ Σ ∪ { ε } a \in \Sigma \cup \set{\varepsilon} a∈Σ∪{ε}, δ ( q , a ) = δ 2 ( q , a ) \delta(q , a) = \delta_{2}(q , a) δ(q,a)=δ2?(q,a)
- δ ( f 1 , ε ) = { f } \delta(f_{1} , \varepsilon) = \set{f} δ(f1?,ε)={f}
- δ ( f 2 , ε ) = { f } \delta(f_{2} , \varepsilon) = \set{f} δ(f2?,ε)={f}
- 往證 L ( r 1 + r 2 ) = L ( M ) L(r_{1} + r_{2}) = L(M) L(r1?+r2?)=L(M)
- 由歸納假設, L ( r 1 ) = L ( M 1 ) L(r_{1}) = L(M_{1}) L(r1?)=L(M1?), L ( r 2 ) = L ( M 2 ) L(r_{2}) = L(M_{2}) L(r2?)=L(M2?),根據正則表達式的定義 L ( r 1 + r 2 ) = L ( r 1 ) ∪ L ( r 2 ) L(r_{1} + r_{2}) = L(r_{1}) \cup L(r_{2}) L(r1?+r2?)=L(r1?)∪L(r2?), L ( r 1 + r 2 ) = L ( M 1 ) ∪ L ( M 2 ) L(r_{1} + r_{2}) = L(M_{1}) \cup L(M_{2}) L(r1?+r2?)=L(M1?)∪L(M2?),因此,只需要證明 L ( M ) = L ( M 1 ) ∪ L ( M 2 ) L(M) = L(M_{1}) \cup L(M_{2}) L(M)=L(M1?)∪L(M2?)
- 先證 L ( M 1 ) ∪ L ( M 2 ) ? L ( M ) L(M_{1}) \cup L(M_{2}) \subseteq L(M) L(M1?)∪L(M2?)?L(M)
- 設 x ∈ L ( M 1 ) ∪ L ( M 2 ) x \in L(M_{1}) \cup L(M_{2}) x∈L(M1?)∪L(M2?),從而有 x ∈ L ( M 1 ) x \in L(M_{1}) x∈L(M1?),或者 x ∈ L ( M 2 ) x \in L(M_{2}) x∈L(M2?)
- 當 x ∈ L ( M 1 ) x \in L(M_{1}) x∈L(M1?)時,有 δ 1 ( q 01 , x ) = { f 1 } \delta_{1}(q_{01} , x) = \set{f_{1}} δ1?(q01?,x)={f1?}
- 由 M M M的定義可得 δ ( q 0 , x ) = δ ( q 0 , ε x ε ) = δ ( δ ( q 0 , ε ) , x ε ) = δ ( { q 01 , q 02 } , x ε ) = δ ( q 01 , x ε ) ∪ δ ( q 02 , x ε ) = δ ( δ ( q 01 , x ) , ε ) ∪ δ ( δ ( q 02 , x ) , ε ) = δ ( δ 1 ( q 01 , x ) , ε ) ∪ δ ( δ 2 ( q 02 , x ) , ε ) = { f } ∪ δ ( δ 2 ( q 02 , x ) , ε ) \begin{aligned} \delta(q_{0} , x) &= \delta(q_{0} , \varepsilon x \varepsilon) \\ &= \delta(\delta(q_{0} , \varepsilon) , x \varepsilon) \\ &= \delta(\set{q_{01} , q_{02}} , x \varepsilon) \\ &= \delta(q_{01} , x \varepsilon) \cup \delta(q_{02} , x \varepsilon) \\ &= \delta(\delta(q_{01} , x) , \varepsilon) \cup \delta(\delta(q_{02} , x) , \varepsilon) \\ &= \delta(\delta_{1}(q_{01} , x) , \varepsilon) \cup \delta(\delta_{2}(q_{02} , x) , \varepsilon) \\ &= \set{f} \cup \delta(\delta_{2}(q_{02} , x) , \varepsilon) \end{aligned} δ(q0?,x)?=δ(q0?,εxε)=δ(δ(q0?,ε),xε)=δ({q01?,q02?},xε)=δ(q01?,xε)∪δ(q02?,xε)=δ(δ(q01?,x),ε)∪δ(δ(q02?,x),ε)=δ(δ1?(q01?,x),ε)∪δ(δ2?(q02?,x),ε)={f}∪δ(δ2?(q02?,x),ε)?
- 即 x ∈ L ( M ) x \in L(M) x∈L(M)
- 同理可證,當 x ∈ L ( M 2 ) x \in L(M_{2}) x∈L(M2?)時, x ∈ L ( M ) x \in L(M) x∈L(M)
- 再證 L ( M ) ? L ( M 1 ) ∪ L ( M 2 ) L(M) \subseteq L(M_{1}) \cup L(M_{2}) L(M)?L(M1?)∪L(M2?)
- 設 x ∈ L ( M ) x \in L(M) x∈L(M), f ∈ δ ( q 0 , x ) f \in \delta(q_{0} , x) f∈δ(q0?,x)
- 按照 M M M的定義, δ ( q 0 , x ) = δ ( q 0 , ε x ε ) = δ ( δ ( q 0 , ε ) , x ε ) = δ ( { q 01 , q 02 } , x ε ) = δ ( q 01 , x ε ) ∪ δ ( q 02 , x ε ) = δ ( δ ( q 01 , x ) , ε ) ∪ δ ( δ ( q 02 , x ) , ε ) = δ ( δ 1 ( q 01 , x ) , ε ) ∪ δ ( δ 2 ( q 02 , x ) , ε ) \begin{aligned} \delta(q_{0} , x) &= \delta(q_{0} , \varepsilon x \varepsilon) \\ &= \delta(\delta(q_{0} , \varepsilon) , x \varepsilon) \\ &= \delta(\set{q_{01} , q_{02}} , x \varepsilon) \\ &= \delta(q_{01} , x \varepsilon) \cup \delta(q_{02} , x \varepsilon) \\ &= \delta(\delta(q_{01} , x) , \varepsilon) \cup \delta(\delta(q_{02} , x) , \varepsilon) \\ &= \delta(\delta_{1}(q_{01} , x) , \varepsilon) \cup \delta(\delta_{2}(q_{02} , x) , \varepsilon) \end{aligned} δ(q0?,x)?=δ(q0?,εxε)=δ(δ(q0?,ε),xε)=δ({q01?,q02?},xε)=δ(q01?,xε)∪δ(q02?,xε)=δ(δ(q01?,x),ε)∪δ(δ(q02?,x),ε)=δ(δ1?(q01?,x),ε)∪δ(δ2?(q02?,x),ε)?
- f ∈ δ ( q 0 , x ) f \in \delta(q_{0} , x) f∈δ(q0?,x),并且此時 M M M的最后一次移動必是根據 δ ( f 1 , ε ) = { f } \delta(f_{1} , \varepsilon) = \set{f} δ(f1?,ε)={f}或 δ ( f 2 , ε ) = { f } \delta(f_{2} , \varepsilon) = \set{f} δ(f2?,ε)={f}之一進行的移動
- 如果是根據定義式 δ ( f 1 , ε ) = { f } \delta(f_{1} , \varepsilon) = \set{f} δ(f1?,ε)={f}進行的最后一次移動,此時必有 δ 1 ( q 01 , x ) = { f 1 } \delta_{1}(q_{01} , x) = \set{f_{1}} δ1?(q01?,x)={f1?}, x ∈ L ( M 1 ) x \in L(M_{1}) x∈L(M1?)
- 如果是根據定義式 δ ( f 2 , ε ) = { f } \delta(f_{2} , \varepsilon) = \set{f} δ(f2?,ε)={f}進行的最后一次移動,此時必有 δ 2 ( q 02 , x ) = { f 2 } \delta_{2}(q_{02} , x) = \set{f_{2}} δ2?(q02?,x)={f2?}, x ∈ L ( M 2 ) x \in L(M_{2}) x∈L(M2?)
- 無論是哪一種情況,都有 x ∈ L ( M 1 ) ∪ L ( M 2 ) x \in L(M_{1}) \cup L(M_{2}) x∈L(M1?)∪L(M2?)
r = r 1 r 2 r = r_{1} r_{2} r=r1?r2?
- 此時 r 1 r_{1} r1?、 r 2 r_{2} r2?中運算符的個數不會大于 k k k,由歸納假設,存在滿足定理要求的 ε ? N F A \varepsilon-NFA ε?NFA, M 1 = ( Q 1 , Σ , δ 1 , q 01 , { f 1 } ) M_{1} = (Q_{1} , \Sigma , \delta_{1} , q_{01} , \set{f_{1}}) M1?=(Q1?,Σ,δ1?,q01?,{f1?}), M 2 = ( Q 2 , Σ , δ 2 , q 02 , { f 2 } ) M_{2} = (Q_{2} , \Sigma , \delta_{2} , q_{02} , \set{f_{2}}) M2?=(Q2?,Σ,δ2?,q02?,{f2?}),使得 L ( M 1 ) = L ( r 1 ) L(M_{1}) = L(r_{1}) L(M1?)=L(r1?), L ( M 2 ) = L ( r 2 ) L(M_{2}) = L(r_{2}) L(M2?)=L(r2?),而且 Q 1 ∩ Q 2 = ? Q_{1} \cap Q_{2} = \emptyset Q1?∩Q2?=?
- 取 M = ( Q 1 ∪ Q 2 , Σ , δ , q 01 , { f 2 } ) M = (Q_{1} \cup Q_{2} , \Sigma , \delta , q_{01} , \set{f_{2}}) M=(Q1?∪Q2?,Σ,δ,q01?,{f2?}),其中 δ \delta δ的定義為
- 對 ? q ∈ Q 1 ? { f 1 } \forall q \in Q_{1} - \set{f_{1}} ?q∈Q1??{f1?}, a ∈ Σ ∪ { ε } a \in \Sigma \cup \set{\varepsilon} a∈Σ∪{ε}, δ ( q , a ) = δ 1 ( q , a ) \delta(q , a) = \delta_{1}(q , a) δ(q,a)=δ1?(q,a)
- 對 ? q ∈ Q 2 \forall q \in Q_{2} ?q∈Q2?, a ∈ Σ ∪ { ε } a \in \Sigma \cup \set{\varepsilon} a∈Σ∪{ε}, δ ( q , a ) = δ 2 ( q , a ) \delta(q , a) = \delta_{2}(q , a) δ(q,a)=δ2?(q,a)
- δ ( f 1 , ε ) = { q 02 } \delta(f_{1} , \varepsilon) = \set{q_{02}} δ(f1?,ε)={q02?}
- 往證 L ( r 1 r 2 ) = L ( M ) L(r_{1} r_{2}) = L(M) L(r1?r2?)=L(M)
- 由歸納假設, L ( r 1 ) = L ( M 1 ) L(r_{1}) = L(M_{1}) L(r1?)=L(M1?), L ( r 2 ) = L ( M 2 ) L(r_{2}) = L(M_{2}) L(r2?)=L(M2?),根據正則表達式的定義 L ( r 1 r 2 ) = L ( r 1 ) L ( r 2 ) L(r_{1} r_{2}) = L(r_{1}) L(r_{2}) L(r1?r2?)=L(r1?)L(r2?), L ( r 1 r 2 ) = L ( M 1 ) L ( M 2 ) L(r_{1} r_{2}) = L(M_{1}) L(M_{2}) L(r1?r2?)=L(M1?)L(M2?),因此,只需要證明 L ( M ) = L ( M 1 ) L ( M 2 ) L(M) = L(M_{1}) L(M_{2}) L(M)=L(M1?)L(M2?)
- 先證 L ( M 1 ) L ( M 2 ) ? L ( M ) L(M_{1}) L(M_{2}) \subseteq L(M) L(M1?)L(M2?)?L(M)
- 設 x ∈ L ( M 1 ) L ( M 2 ) x \in L(M_{1}) L(M_{2}) x∈L(M1?)L(M2?),從而有 x 1 ∈ L ( M 1 ) x_{1} \in L(M_{1}) x1?∈L(M1?)并且 x 2 ∈ L ( M 2 ) x_{2} \in L(M_{2}) x2?∈L(M2?),使得 x = x 1 x 2 x = x_{1} x_{2} x=x1?x2?
- δ ( q 01 , x 1 ) = δ 1 ( q 01 , x 1 ) = { f 1 } \delta(q_{01} , x_{1}) = \delta_{1}(q_{01} , x_{1}) = \set{f_{1}} δ(q01?,x1?)=δ1?(q01?,x1?)={f1?}, δ ( q 02 , x 2 ) = δ 2 ( q 02 , x 2 ) = { f 2 } \delta(q_{02} , x_{2}) = \delta_{2}(q_{02} , x_{2}) = \set{f_{2}} δ(q02?,x2?)=δ2?(q02?,x2?)={f2?}
- δ ( q 01 , x ) = δ ( q 01 , x 1 x 2 ) = δ ( δ ( q 01 , x 1 ) , x 2 ) = δ ( δ 1 ( q 01 , x 1 ) , x 2 ) = δ ( f 1 , x 2 ) = δ ( f 1 , ε x 2 ) = δ ( δ ( f 1 , ε ) , x 2 ) = δ ( q 02 , x 2 ) = δ 2 ( q 02 , x 2 ) = { f 2 } \begin{aligned} \delta(q_{01} , x) &= \delta(q_{01} , x_{1} x_{2}) \\ &= \delta(\delta(q_{01} , x_{1}) , x_{2}) \\ &= \delta(\delta_{1}(q_{01} , x_{1}) , x_{2}) \\ &= \delta(f_{1} , x_{2}) \\ &= \delta(f_{1} , \varepsilon x_{2}) \\ &= \delta(\delta(f_{1} , \varepsilon) , x_{2}) \\ &= \delta(q_{02} , x_{2}) \\ &= \delta_{2}(q_{02} , x_{2}) \\ &= \set{f_{2}} \end{aligned} δ(q01?,x)?=δ(q01?,x1?x2?)=δ(δ(q01?,x1?),x2?)=δ(δ1?(q01?,x1?),x2?)=δ(f1?,x2?)=δ(f1?,εx2?)=δ(δ(f1?,ε),x2?)=δ(q02?,x2?)=δ2?(q02?,x2?)={f2?}?
- 即 x ∈ L ( M ) x \in L(M) x∈L(M)
- 再證 L ( M ) ? L ( M 1 ) L ( M 2 ) L(M) \subseteq L(M_{1}) L(M_{2}) L(M)?L(M1?)L(M2?)
- 設 x ∈ L ( M ) x \in L(M) x∈L(M), δ ( q 01 , x ) = { f 2 } \delta(q_{01} , x) = \set{f_{2}} δ(q01?,x)={f2?}
- 必存在 x x x的前綴 x 1 x_{1} x1?和后綴 x 2 x_{2} x2?,使得 x = x 1 x 2 x = x_{1} x_{2} x=x1?x2?,并且 x 1 x_{1} x1?將 M M M從狀態 q 01 q_{01} q01?引導到狀態 f 1 f_{1} f1?, x 2 x_{2} x2?將 M M M從狀態 q 02 q_{02} q02?引導到狀態 f 2 f_{2} f2?,即 δ ( q 01 , x ) = δ ( q 01 , x 1 x 2 ) = δ ( f 1 , x 2 ) = δ ( f 1 , ε x 2 ) = δ ( q 02 , x 2 ) = { f 2 } \begin{aligned} \delta(q_{01} , x) &= \delta(q_{01} , x_{1} x_{2}) \\ &= \delta(f_{1} , x_{2}) \\ &= \delta(f_{1} , \varepsilon x_{2}) \\ &= \delta(q_{02} , x_{2}) \\ &= \set{f_{2}} \end{aligned} δ(q01?,x)?=δ(q01?,x1?x2?)=δ(f1?,x2?)=δ(f1?,εx2?)=δ(q02?,x2?)={f2?}?
- 其中, δ ( q 01 , x 1 ) = { f 1 } \delta(q_{01} , x_{1}) = \set{f_{1}} δ(q01?,x1?)={f1?},說明 δ 1 ( q 01 , x 1 ) = { f 1 } \delta_{1}(q_{01} , x_{1}) = \set{f_{1}} δ1?(q01?,x1?)={f1?}, δ ( q 02 , x 2 ) = { f 2 } \delta(q_{02} , x_{2}) = \set{f_{2}} δ(q02?,x2?)={f2?},說明 δ 2 ( q 02 , x 2 ) = { f 2 } \delta_{2}(q_{02} , x_{2}) = \set{f_{2}} δ2?(q02?,x2?)={f2?},這表明 x 1 ∈ L ( M 1 ) x_{1} \in L(M_{1}) x1?∈L(M1?), x 2 ∈ L ( M 2 ) x_{2} \in L(M_{2}) x2?∈L(M2?)
- 從而 x = x 1 x 2 ∈ L ( M 1 ) L ( M 2 ) x = x_{1} x_{2} \in L(M_{1}) L(M_{2}) x=x1?x2?∈L(M1?)L(M2?)
r = r 1 ? r = r_{1}^{*} r=r1??
- 此時 r 1 r_{1} r1?中運算符的個數不會大于 k k k,由歸納假設,存在滿足定理要求的 ε ? N F A \varepsilon-NFA ε?NFA, M 1 = ( Q 1 , Σ , δ 1 , q 01 , { f 1 } ) M_{1} = (Q_{1} , \Sigma , \delta_{1} , q_{01} , \set{f_{1}}) M1?=(Q1?,Σ,δ1?,q01?,{f1?}),使得 L ( M 1 ) = L ( r 1 ) L(M_{1}) = L(r_{1}) L(M1?)=L(r1?)
- 取 M = ( Q 1 ∪ { q 0 , f } , Σ , δ , q 0 , { f } ) M = (Q_{1} \cup \set{q_{0} , f} , \Sigma , \delta , q_{0} , \set{f}) M=(Q1?∪{q0?,f},Σ,δ,q0?,{f}),其中 q 0 q_{0} q0?, f ? Q 1 f \notin Q_{1} f∈/Q1?, δ \delta δ的定義為
- 對 ? q ∈ Q 1 ? { f 1 } \forall q \in Q_{1} - \set{f_{1}} ?q∈Q1??{f1?}, a ∈ Σ a \in \Sigma a∈Σ, δ ( q , a ) = δ 1 ( q , a ) \delta(q , a) = \delta_{1}(q , a) δ(q,a)=δ1?(q,a)
- δ ( f 1 , ε ) = { q 01 , f } \delta(f_{1} , \varepsilon) = \set{q_{01} , f} δ(f1?,ε)={q01?,f}
- δ ( q 0 , ε ) = { q 01 , f } \delta(q_{0} , \varepsilon) = \set{q_{01} , f} δ(q0?,ε)={q01?,f}
-
往證 L ( r 1 ? ) = L ( M ) L(r_{1}^{*}) = L(M) L(r1??)=L(M)
-
由歸納假設, L ( M 1 ) = L ( r 1 ) L(M_{1}) = L(r_{1}) L(M1?)=L(r1?),根據正則表達式的定義 L ( r ) = ( L ( r 1 ) ) ? L(r) = (L(r_{1}))^{*} L(r)=(L(r1?))?,只需證明 L ( M ) = ( L ( M 1 ) ) ? L(M) = (L(M_{1}))^{*} L(M)=(L(M1?))?
-
先證 L ( M ) ? ( L ( M 1 ) ) ? L(M) \subseteq (L(M_{1}))^{*} L(M)?(L(M1?))?
-
設 x ∈ L ( M ) x \in L(M) x∈L(M),如果 x = ε x = \varepsilon x=ε,由克林閉包的定義,顯然 x ∈ ( L ( M 1 ) ) ? x \in (L(M_{1}))^{*} x∈(L(M1?))?
-
如果 x ≠ ε x \neq \varepsilon x=ε,由 M M M的定義,必定存在 x 1 x_{1} x1?, x 2 x_{2} x2?, ? \cdots ?, x n x_{n} xn?, x = x 1 x 2 ? x n ( n ≥ 1 ) x = x_{1} x_{2} \cdots x_{n} (n \geq 1) x=x1?x2??xn?(n≥1)滿足 δ ( q 0 , x ) = δ ( q 0 , x 1 x 2 ? x n ) = δ ( δ ( q 0 , ε ) , x 1 x 2 ? x n ) = δ ( q 01 , x 1 x 2 ? x n ) = δ ( δ 1 ( q 01 , x 1 ) , x 2 ? x n ) = δ ( f 1 , x 2 ? x n ) ? = δ ( f 1 , x n ) = δ ( δ ( f 1 , ε ) , x n ) = δ ( q 01 , x n ) = δ ( δ 1 ( q 01 , x n ) , ε ) = δ ( f 1 , ε ) = { f } \begin{aligned} \delta(q_{0} , x) &= \delta(q_{0} , x_{1} x_{2} \cdots x_{n}) \\ &= \delta(\delta(q_{0} , \varepsilon) , x_{1} x_{2} \cdots x_{n}) \\ &= \delta(q_{01} , x_{1} x_{2} \cdots x_{n}) \\ &= \delta(\delta_{1}(q_{01} , x_{1}) , x_{2} \cdots x_{n}) \\ &= \delta(f_{1} , x_{2} \cdots x_{n}) \\ &\cdots \\ &= \delta(f_{1} , x_{n}) \\ &= \delta(\delta(f_{1} , \varepsilon) , x_{n}) \\ &= \delta(q_{01} , x_{n}) \\ &= \delta(\delta_{1}(q_{01} , x_{n}) , \varepsilon) \\ &= \delta(f_{1} , \varepsilon) \\ &= \set{f} \end{aligned} δ(q0?,x)?=δ(q0?,x1?x2??xn?)=δ(δ(q0?,ε),x1?x2??xn?)=δ(q01?,x1?x2??xn?)=δ(δ1?(q01?,x1?),x2??xn?)=δ(f1?,x2??xn?)?=δ(f1?,xn?)=δ(δ(f1?,ε),xn?)=δ(q01?,xn?)=δ(δ1?(q01?,xn?),ε)=δ(f1?,ε)={f}?
-
這表明 x = x 1 x 2 ? x n ∈ ( L ( M 1 ) ) ? x = x_{1} x_{2} \cdots x_{n} \in (L(M_{1}))^{*} x=x1?x2??xn?∈(L(M1?))?
-
-
再證 ( L ( M 1 ) ) ? ? L ( M ) (L(M_{1}))^{*} \subseteq L(M) (L(M1?))??L(M)
- 類似地,不難證明 ( L ( M 1 ) ) ? ? L ( M ) (L(M_{1}))^{*} \subseteq L(M) (L(M1?))??L(M)
-
例題
問題
- 構造與正則表達式 ( 0 + 1 ) ? 0 + ( 00 ) ? (0 + 1)^{*} 0 + (00)^{*} (0+1)?0+(00)?等價的 F A FA FA
解答
正則語言可以用正則表達式表示
構造與 D F A DFA DFA等價的正則表達式
- 設 D F A M = ( { q 1 , q 2 , ? , q n } , Σ , δ , q 1 , F ) DFA \ M = (\set{q_{1} , q_{2} , \cdots , q_{n}} , \Sigma , \delta , q_{1} , F) DFA?M=({q1?,q2?,?,qn?},Σ,δ,q1?,F)
- 令 R i j k = { x ∣ δ ( q i , x ) = q j , 而且對于 x 的任意前綴 y ( y ≠ x , y ≠ ε ) , 如果 δ ( q i , y ) = q l , 則 l ≤ k } R_{ij}^{k} = \set{x \mid \delta(q_{i} , x) = q_{j} , 而且對于 x 的任意前綴 y (y \neq x , y \neq \varepsilon) , 如果 \delta(q_{i} , y) = q_{l} , 則 l \leq k} Rijk?={x∣δ(qi?,x)=qj?,而且對于x的任意前綴y(y=x,y=ε),如果δ(qi?,y)=ql?,則l≤k}
- 為了便于計算,將 R i j k R_{ij}^{k} Rijk?遞歸地定義為
R i j 0 = { { a ∣ δ ( q i , a ) = q j } , i ≠ j { a ∣ δ ( q i , a ) = q j } ∪ { ε } , i = j R_{ij}^{0} = \begin{cases} \set{a \mid \delta(q_{i} , a) = q_{j}} , & i \neq j \\ \set{a \mid \delta(q_{i} , a) = q_{j}} \cup \set{\varepsilon} , & i = j \end{cases} Rij0?={{a∣δ(qi?,a)=qj?},{a∣δ(qi?,a)=qj?}∪{ε},?i=ji=j?
R i j k = R i k k ? 1 ( R k k k ? 1 ) ? R k j k ? 1 ∪ R i j k ? 1 R_{ij}^{k} = R_{ik}^{k - 1} (R_{kk}^{k - 1})^{*} R_{kj}^{k - 1} \cup R_{ij}^{k - 1} Rijk?=Rikk?1?(Rkkk?1?)?Rkjk?1?∪Rijk?1?
- 顯然, L ( M ) = ? q f ∈ F R 1 f n L(M) = \displaystyle\bigcup\limits_{q_{f} \in F}{R_{1f}^{n}} L(M)=qf?∈F??R1fn?
圖上作業方法
- 對 D F A M = ( Q , Σ , δ , q 0 , F ) DFA \ M = (Q , \Sigma , \delta , q_{0} , F) DFA?M=(Q,Σ,δ,q0?,F)的狀態轉移圖,操作步驟如下
預處理
- 在狀態轉移圖中增加狀態 X X X和 Y Y Y,從狀態 X X X到 M M M的開始狀態 q 0 q_{0} q0?引一條標記為 ε \varepsilon ε的弧,對 ? q ∈ F \forall q \in F ?q∈F,從狀態 q q q到狀態 Y Y Y分別引一條標記為 ε \varepsilon ε的弧
- 去掉所有的不可達狀態
循環操作
- 重復如下操作,直到該圖中不再包含除了 X X X和 Y Y Y的其他狀態,并且這兩個狀態之間最多只有一條弧
- 并弧:對圖中任意兩個狀態 q q q, p p p,如果圖中包含有從 q q q到 p p p的標記為 r 1 r_{1} r1?, r 2 r_{2} r2?, ? \cdots ?, r g r_{g} rg?的并行弧,則用從 q q q到 p p p的、標記為 r 1 + r 2 + ? + r g r_{1} + r_{2} + \cdots + r_{g} r1?+r2?+?+rg?的弧取代這 g g g個并行弧,其中, q q q和 p p p可以是同一個狀態
- 去狀態 1 1 1:對圖中任意 3 3 3個狀態 q q q, p p p, t t t,如果從 q q q到 p p p有一條標記為 r 1 r_{1} r1?的弧,從 p p p到 t t t有一條標記為 r 2 r_{2} r2?的弧,并且不存在從狀態 p p p到狀態 p p p的弧,則將狀態 p p p和與之關聯的這兩條弧去掉,增加一條從 q q q到 t t t的標記為 r 1 r 2 r_{1} r_{2} r1?r2?的弧
- 去狀態 2 2 2:對圖中任意 3 3 3個狀態 q q q, p p p, t t t,如果從 q q q到 p p p有一條標記為 r 1 r_{1} r1?的弧,從 p p p到 t t t有一條標記為 r 2 r_{2} r2?的弧,并且存在一條從狀態 p p p到狀態 p p p標記為 r 3 r_{3} r3?的弧,則將狀態 p p p和與之關聯的這 3 3 3條弧去掉,增加一條從 q q q到 t t t的標記為 r 1 r 3 ? r 2 r_{1} r_{3}^{*} r_{2} r1?r3??r2?的弧
- 去狀態 3 3 3:如果圖中只有 3 3 3個狀態,而且不存在從狀態 X X X到 Y Y Y的路,則將除狀態 X X X和 Y Y Y之外的第三個狀態及其相關的弧全部刪除
- 從狀態 X X X到 Y Y Y的弧的標記為所求的正則表達式,如果該弧不存在,則所求的正則表達式為 ? \emptyset ?