例
求滿足 P ( x j ) = f ( x j ) P(x_j) = f(x_j) P(xj?)=f(xj?) ( j = 0 , 1 , 2 j=0,1,2 j=0,1,2) 及 P ′ ( x 1 ) = f ′ ( x 1 ) P'(x_1) = f'(x_1) P′(x1?)=f′(x1?) 的插值多項式及其余項表達式。
解:
由給定條件,可確定次數不超過3的插值多項式。此多項式通過點 ( x 0 , f ( x 0 ) ) , ( x 1 , f ( x 1 ) ) (x_0,f(x_0)),(x_1,f(x_1)) (x0?,f(x0?)),(x1?,f(x1?))及 ( x 2 , f ( x 2 ) ) (x_2,f(x_2)) (x2?,f(x2?)),故形式為
P ( x ) = f ( x 0 ) + f [ x 0 , x 1 ] ( x ? x 0 ) + f [ x 0 , x 1 , x 2 ] ( x ? x 0 ) ( x ? x 1 ) + A ( x ? x 0 ) ( x ? x 1 ) ( x ? x 2 ) P(x) = f(x_0) + f[x_0,x_1](x-x_0) + f[x_0,x_1,x_2](x-x_0)(x-x_1)+ A(x-x_0)(x-x_1)(x-x_2) P(x)=f(x0?)+f[x0?,x1?](x?x0?)+f[x0?,x1?,x2?](x?x0?)(x?x1?)+A(x?x0?)(x?x1?)(x?x2?),
其中A為待定常數,可由條件 P ′ ( x 1 ) = f ′ ( x 1 ) P'(x_1) = f'(x_1) P′(x1?)=f′(x1?)確定
A = f ′ ( x 1 ) ? f [ x 0 , x 1 ] ? ( x 1 ? x 0 ) f [ x 0 , x 1 , x 2 ] ( x 1 ? x 0 ) ( x 1 ? x 2 ) A=\frac{f'(x_1)-f[x_0,x_1]-(x_1-x_0)f[x_0,x_1,x_2]}{(x_1-x_0)(x_1-x_2)} A=(x1??x0?)(x1??x2?)f′(x1?)?f[x0?,x1?]?(x1??x0?)f[x0?,x1?,x2?]?
為求出余項 R ( x ) = f ( x ) ? P ( x ) R(x)=f(x)-P(x) R(x)=f(x)?P(x)的表達式,設
R ( x ) = f ( x ) ? P ( x ) = K ( x ) ( x ? x 0 ) 2 ( x ? x 1 ) 2 ( x ? x 2 ) R(x) = f(x)-P(x) = K(x)(x-x_0)^2(x-x_1)^2(x-x_2) R(x)=f(x)?P(x)=K(x)(x?x0?)2(x?x1?)2(x?x2?)
其中 K ( x ) K(x) K(x)為待定函數。
構造
φ ( t ) = f ( t ) ? P ( t ) ? K ( x ) ( t ? x 0 ) 2 ( t ? x 1 ) 2 ( t ? x 2 ) \varphi(t) = f(t)-P(t)-K(x)(t-x_0)^2(t-x_1)^2(t-x_2) φ(t)=f(t)?P(t)?K(x)(t?x0?)2(t?x1?)2(t?x2?)
顯然 φ ( x j ) = 0 ( j = 0 , 1 , 2 ) \varphi(x_j)=0(j=0,1,2) φ(xj?)=0(j=0,1,2),且 φ ′ ( x 1 ) = 0 , φ ( x ) = 0 \varphi'(x_1)=0,\varphi(x)=0 φ′(x1?)=0,φ(x)=0,故 φ ( t ) \varphi(t) φ(t)在 ( a , b ) (a,b) (a,b)內有五個零點(重根算兩個)。
由Rolle 定理, φ ( 4 ) ( t ) \varphi^{(4)}(t) φ(4)(t)在 ( a , b ) (a,b) (a,b)內至少有一個零點 ξ \xi ξ,故
φ ( 4 ) ( ξ ) = f ( 4 ) ( ξ ) ? 4 ! K ( x ) = 0 \varphi^{(4)}(\xi)=f^{(4)}(\xi)-4!K(x)=0 φ(4)(ξ)=f(4)(ξ)?4!K(x)=0
于是 K ( x ) = f ( 4 ) ( ξ ) / 4 ! K(x)=f^{(4)}(\xi)/4! K(x)=f(4)(ξ)/4!,余項表達式為
R ( x ) = f ( 4 ) ( ξ ) ( x ? x 0 ) ( x ? x 1 ) 2 ( x ? x 2 ) / 4 ! R(x)=f^{(4)}(\xi)(x-x_0)(x-x_1)^2(x-x_2)/4! R(x)=f(4)(ξ)(x?x0?)(x?x1?)2(x?x2?)/4!
其中 ξ \xi ξ位于 x 0 , x 1 , x 2 x_0,x_1,x_2 x0?,x1?,x2?和 x x x所界定的范圍內.