雖然C++11引入了RTTI、Metaprogramming?等技術,但C++在Reflection編程方面依舊功能有限。在社區上,RTTR則提供了一套C++編寫的反射庫,補充了C++在Reflection方面的缺陷。
零、環境
操作系統 | Windows 11 |
Visual Studio | Visual Studio Community 2022? |
CMake | CMake 3.24.2 |
Doxygen | Doxygen-1.9.8 |
一、下載源碼
從GitHub拉取RTTR代碼:
git clone https://github.com/rttrorg/rttr.git
二、編譯
按照下表配置CMake,并完成構建與生成,
Where is the source code | Windows 11 |
Where to build the binaries | Visual Studio Community 2022? |
CMAKE_INSTALL_PREFIX | CMake 3.24.2 |
打開rttr.sln,構建"ALL_BUILD"完成RTTR編譯;構建"INSTALL"完成RTTR安裝。
三、RTTR源碼分析
雖然各種反射機制的具體實現有所不同,但大體思路還是一致的:
- 生成類型元數據
類型元數據包括構造函數、屬性、方法等,類型元數據可以在編譯階段自動生成,也可以在運行階段手動注冊;
- 執行反射
需要執行反射操作時,依據存儲的反射信息訪問對應的地址。
在RTTR中,類型元數據存儲在rttr::detail::class_data、rttr::detail::type_data中,
struct RTTR_LOCAL class_data
{class_data(get_derived_info_func func, std::vector<type> nested_types): m_derived_info_func(func),m_nested_types(nested_types),m_dtor(create_invalid_item<destructor>()){}get_derived_info_func m_derived_info_func;std::vector<type> m_base_types;std::vector<type> m_derived_types;std::vector<rttr_cast_func> m_conversion_list;std::vector<property> m_properties;std::vector<method> m_methods;std::vector<constructor> m_ctors;std::vector<type> m_nested_types;destructor m_dtor;
};
struct RTTR_LOCAL type_data
{type_data* raw_type_data;type_data* wrapped_type;type_data* array_raw_type;std::string name;string_view type_name;std::size_t get_sizeof;std::size_t get_pointer_dimension;impl::create_variant_func create_variant;impl::get_base_types_func get_base_types; // FIXME: this info should not be stored, its just temporarily,// thats why we store it as function pointerenumeration_wrapper_base* enum_wrapper;impl::get_metadata_func get_metadata;impl::create_wrapper_func create_wrapper;impl::get_class_data_func get_class_data;bool is_valid;RTTR_FORCE_INLINE bool type_trait_value(type_trait_infos type_trait) const RTTR_NOEXCEPT { return m_type_traits.test(static_cast<std::size_t>(type_trait)); }type_traits m_type_traits;
};
3.1 生成rttr::detials::type_data
當第一次調用type::get()函數時,會生成對應的類型元數據,
template<typename T>
RTTR_INLINE type type::get() RTTR_NOEXCEPT
{using non_ref_type = typename std::remove_cv<typename std::remove_reference<T>::type>::type;return detail::create_or_get_type<non_ref_type>();
}template<typename T>
RTTR_LOCAL RTTR_INLINE enable_if_t<is_complete_type<T>::value, type>
create_or_get_type() RTTR_NOEXCEPT
{// when you get an error here, then the type was not completely defined// (a forward declaration is not enough because base_classes will not be found)using type_must_be_complete = char[ sizeof(T) ? 1: -1 ];(void) sizeof(type_must_be_complete);static const type val = create_type(get_registration_manager().add_item(make_type_data<T>()));return val;
}
?從中可以看出,rttr::type實際上時對類型數據的一種引用。
3.2 注冊類型信息數據
rttr::registration實際上時借助于函數對象rttr::registration::bind完成構造函數的注冊,
template<typename Class_Type>
template<typename F, typename acc_level, typename Tp>
registration::bind<detail::ctor_func, Class_Type, F, acc_level> registration::class_<Class_Type>::constructor(F func, acc_level level)
{using namespace detail;static_assert(is_functor<F>::value,"No valid accessor for invoking the constructor provided!");static_assert(std::is_same<return_func, typename method_type<F>::type>::value,"For creating this 'class type', please provide a function pointer or std::function with a return value.");return {create_if_empty(m_reg_exec), func};
}
template<typename Class_Type, typename F, typename acc_level>
class registration::bind<detail::ctor_func, Class_Type, F, acc_level> : public registration::class_<Class_Type>
{
//...
public:bind(const std::shared_ptr<detail::registration_executer>& reg_exec, F func): registration::class_<Class_Type>(reg_exec), m_reg_exec(reg_exec), m_func(func){m_reg_exec->add_registration_func(this);}template<typename... Args>registration::class_<Class_Type> operator()(Args&&... args){m_ctor = create_custom_constructor(m_func, std::forward<Args>(args)...);return registration::class_<Class_Type>(m_reg_exec);}
//...
}
registration_executer::~registration_executer()
{for (auto&& item : m_list){item.second();}
}
至于,屬性、方法等類型元數據的注冊,原理類似,可參照對應代碼。
3.3 生成對象
rttr::type調用存儲的構造器,完成對象的實例化。
variant type::create(vector<argument> args) const
{auto& ctors = m_type_data->get_class_data().m_ctors;for (const auto& ctor : ctors){if (detail::compare_with_arg_list::compare(ctor.get_parameter_infos(), args))return ctor.invoke_variadic(std::move(args));}return variant();
}
四、擴展:Reflection的其他實現
4.1 MFC
在MFC中,DECLARE_DYNCREATE/IMPLEMENT_DYNCREATE宏用于聲明、定義反射相關元數據,
#define DECLARE_DYNAMIC(class_name) \
public: \static const CRuntimeClass class##class_name; \virtual CRuntimeClass* GetRuntimeClass() const; \#define DECLARE_DYNCREATE(class_name) \DECLARE_DYNAMIC(class_name) \static CObject* PASCAL CreateObject();#define IMPLEMENT_RUNTIMECLASS(class_name, base_class_name, wSchema, pfnNew, class_init) \AFX_COMDAT const CRuntimeClass class_name::class##class_name = { \#class_name, sizeof(class class_name), wSchema, pfnNew, \RUNTIME_CLASS(base_class_name), NULL, class_init }; \CRuntimeClass* class_name::GetRuntimeClass() const \{ return RUNTIME_CLASS(class_name); }#define IMPLEMENT_DYNAMIC(class_name, base_class_name) \IMPLEMENT_RUNTIMECLASS(class_name, base_class_name, 0xFFFF, NULL, NULL)#define IMPLEMENT_DYNCREATE(class_name, base_class_name) \CObject* PASCAL class_name::CreateObject() \{ return new class_name; } \IMPLEMENT_RUNTIMECLASS(class_name, base_class_name, 0xFFFF, \class_name::CreateObject, NULL)
從中,可以看到,反射元數據實際上時存放到了CRuntimeClass靜態變量中,
struct CRuntimeClass
{
// AttributesLPCSTR m_lpszClassName;int m_nObjectSize;UINT m_wSchema; // schema number of the loaded classCObject* (PASCAL* m_pfnCreateObject)(); // NULL => abstract class
#ifdef _AFXDLLCRuntimeClass* (PASCAL* m_pfnGetBaseClass)();
#elseCRuntimeClass* m_pBaseClass;
#endif// OperationsCObject* CreateObject();BOOL IsDerivedFrom(const CRuntimeClass* pBaseClass) const;// dynamic name lookup and creationstatic CRuntimeClass* PASCAL FromName(LPCSTR lpszClassName);static CRuntimeClass* PASCAL FromName(LPCWSTR lpszClassName);static CObject* PASCAL CreateObject(LPCSTR lpszClassName);static CObject* PASCAL CreateObject(LPCWSTR lpszClassName);// Implementationvoid Store(CArchive& ar) const;static CRuntimeClass* PASCAL Load(CArchive& ar, UINT* pwSchemaNum);// CRuntimeClass objects linked together in simple listCRuntimeClass* m_pNextClass; // linked list of registered classesconst AFX_CLASSINIT* m_pClassInit;
};
4.2 Qt
在筆者<Qt源碼分析:QMetaObject實現原理>一文中,已就Qt反射機制做了分析,可以看到Qt反射相關元數據時存放到了QMetaObject中了,
struct Q_CORE_EXPORT QMetaObject
{//...struct { // private dataSuperData superdata;const QByteArrayData *stringdata;const uint *data;typedef void (*StaticMetacallFunction)(QObject *, QMetaObject::Call, int, void **);StaticMetacallFunction static_metacall;const SuperData *relatedMetaObjects;void *extradata; //reserved for future use} d;//...
};
網絡資料
Reflectionhttps://en.wikipedia.org/wiki/Reflection_%28computer_programming%29
The C++ Extensions for Reflection?https://en.cppreference.com/w/cpp/experimental/reflect
RTTRhttps://www.rttr.org/QMetaObject
https://doc.qt.io/qt-5/qmetaobject.html
yazi-web?https://github.com/kaifamiao/yazi-web.git
Boost Hana?https://www.boost.org/doc/libs/1_80_0/libs/hana/doc/html/index.html
Boost PRF?https://www.boost.org/doc/libs/master/doc/html/boost_pfr.html
?An Introduction to Reflection in C++https://blog.csdn.net/qq_26221775/article/details/138768568?spm=1001.2014.3001.5501
FreeCAD: C++ Generic Factory Method inteface advicehttps://forum.freecad.org/viewtopic.php?p=24221&hilit=BaseClass#p24221