一、概述
??深度學習模型能夠在各種生產場景中發揮重要的作用,而深度學習模型往往在Python環境下完成訓練,因而訓練好的模型如何在生產環境下實現穩定可靠的部署,便是一個重要內容。C++開發平臺廣泛存在于各種復雜的生產環境,隨著業務效能需求的不斷提高,充分運用深度學習技術的優勢顯得尤為重要。本文介紹如何實現將深度學習模型部署在C++平臺上。
二、步驟
??s1. Python環境中安裝深度學習框架(如PyTorch、TensorFlow等);
??s2. P ython環境中設計并訓練深度學習模型;
??s3. 將訓練好的模型保存為.onnx格式的模型文件;
??s4. C++環境中安裝Microsoft.ML.OnnxRuntime程序包;
(Visual Studio 2022中可通過項目->管理NuGet程序包完成快捷安裝)
??s5. C++環境中加載模型文件,完成功能開發。
三、示例
??在Python環境下設計并訓練一個關于手寫數字識別的卷積神經網絡(CNN)模型,將模型導出為ONNX格式的文件,然后在C++環境下完成對模型的部署和推理。
1. Python訓練和導出
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
from torch.functional import F# 定義簡單的CNN模型
class SimpleCNN(nn.Module):def __init__(self):super(SimpleCNN, self).__init__()self.conv1 = nn.Conv2d(1, 16, kernel_size=3, stride=1, padding=1)self.pool = nn.MaxPool2d(2, 2)self.conv2 = nn.Conv2d(16, 32, kernel_size=3, stride=1, padding=1)self.fc1 = nn.Linear(32 * 7 * 7, 128)self.fc2 = nn.Linear(128, 10)def forward(self, x):x = self.pool(F.relu(self.conv1(x)))x = self.pool(F.relu(self.conv2(x)))x = x.view(-1, 32 * 7 * 7)x = F.relu(self.fc1(x))x = self.fc2(x)return x# 數據預處理
transform = transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.1307,), (0.3081,))
])# 加載訓練數據
train_dataset = datasets.MNIST('data', train=True, download=True, transform=transform)
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=64, shuffle=True)# 初始化模型、損失函數和優化器
model = SimpleCNN()
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)# 訓練模型
def train(model, train_loader, criterion, optimizer, epochs=5):model.train()for epoch in range(epochs):running_loss = 0.0for batch_idx, (data, target) in enumerate(train_loader):optimizer.zero_grad()output = model(data)loss = criterion(output, target)loss.backward()optimizer.step()running_loss += loss.item()print(f'Epoch {epoch+1}, Loss: {running_loss/len(train_loader)}')# 訓練模型
train(model, train_loader, criterion, optimizer)# 導出為ONNX格式
dummy_input = torch.randn(1, 1, 28, 28)
torch.onnx.export(model,dummy_input,"mnist_model.onnx",export_params=True,opset_version=11,do_constant_folding=True,input_names=['input'],output_names=['output'],dynamic_axes={'input': {0: 'batch_size'}, 'output': {0: 'batch_size'}}
)print("模型已成功導出為mnist_model.onnx")
2. C++ 部署和推理
#include <iostream>
#include <vector>
#include <opencv2/opencv.hpp>
#include <onnxruntime_cxx_api.h>int main() {// 初始化環境Ort::Env env(ORT_LOGGING_LEVEL_WARNING, "MNIST");Ort::SessionOptions session_options;session_options.SetIntraOpNumThreads(1);session_options.SetGraphOptimizationLevel(GraphOptimizationLevel::ORT_ENABLE_ALL);// 加載模型std::wstring model_path = L"mnist_model.onnx";Ort::Session session(env, model_path.c_str(), session_options);// 準備輸入std::vector<int64_t> input_shape = { 1, 1, 28, 28 };size_t input_tensor_size = 28 * 28;std::vector<float> input_tensor_values(input_tensor_size);// 讀取測試圖片cv::Mat test_image = cv::imread("test.jpg", cv::IMREAD_GRAYSCALE); // 將Mat數據復制到vector中for (int i = 0; i < test_image.rows; ++i) {for (int j = 0; j < test_image.cols; ++j) {input_tensor_values[i * test_image.cols + j] = static_cast<float>(test_image.at<uchar>(i, j)); // 注意:uchar是unsigned char的縮寫,表示無符號字符,通常用于存儲灰度值}}// 創建輸入張量auto memory_info = Ort::MemoryInfo::CreateCpu(OrtArenaAllocator, OrtMemTypeDefault);Ort::Value input_tensor = Ort::Value::CreateTensor<float>(memory_info, input_tensor_values.data(), input_tensor_size, input_shape.data(), 4);// 設置輸入輸出名稱std::vector<const char*> input_names;std::vector<const char*> output_names;input_names.push_back(session.GetInputNameAllocated(0, Ort::AllocatorWithDefaultOptions()).get());output_names.push_back(session.GetOutputNameAllocated(0, Ort::AllocatorWithDefaultOptions()).get());// 運行推理auto output_tensors = session.Run(Ort::RunOptions{ nullptr },input_names.data(),&input_tensor,1,output_names.data(),1);// 獲取輸出結果float* output = output_tensors[0].GetTensorMutableData<float>();std::vector<float> results(output, output + 10);// 找到預測的數字int predicted_digit = 0;float max_probability = results[0];for (int i = 1; i < 10; i++) {if (results[i] > max_probability) {max_probability = results[i];predicted_digit = i;}}std::cout << "預測結果: " << predicted_digit << std::endl;std::cout << "置信度分布:" << std::endl;for (int i = 0; i < 10; i++) {std::cout << "數字 " << i << ": " << results[i] << std::endl;}return 0;
}
測試圖片:
程序運行:
End.