問題3
求系統 U u + A U x = 0 U_u + A U_x = 0 Uu?+AUx?=0 的特征并寫出通解,其中矩陣 A A A 如下:
A 1 = ( 3 2 1 0 2 1 0 0 1 ) , A 2 = ( 3 2 1 0 2 1 0 0 ? 1 ) , A_1 = \begin{pmatrix} 3 & 2 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix}, \quad A_2 = \begin{pmatrix} 3 & 2 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & -1 \end{pmatrix}, A1?=???300?220?111????,A2?=???300?220?11?1????,
A 3 = ( 3 2 1 0 ? 2 1 0 0 ? 1 ) , A 4 = ( ? 3 2 1 0 ? 2 1 0 0 ? 1 ) , A_3 = \begin{pmatrix} 3 & 2 & 1 \\ 0 & -2 & 1 \\ 0 & 0 & -1 \end{pmatrix}, \quad A_4 = \begin{pmatrix} -3 & 2 & 1 \\ 0 & -2 & 1 \\ 0 & 0 & -1 \end{pmatrix}, A3?=???300?2?20?11?1????,A4?=????300?2?20?11?1????,
A 5 = ( 1 2 3 2 0 3 2 3 0 ) . A_5 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 0 & 3 \\ 2 & 3 & 0 \end{pmatrix}. A5?=???122?203?330????.
解答
系統為 ? U ? u + A ? U ? x = 0 \frac{\partial \mathbf{U}}{\partial u} + A \frac{\partial \mathbf{U}}{\partial x} = 0 ?u?U?+A?x?U?=0,其中 U = ( u 1 , u 2 , u 3 ) T \mathbf{U} = (u_1, u_2, u_3)^T U=(u1?,u2?,u3?)T 是向量函數, u u u 和 x x x 是自變量。
- 特征:指矩陣 A A A 的特征值 λ \lambda λ,它們決定了特征曲線的方向。特征曲線由方程 x ? λ u = 常數 x - \lambda u = \text{常數} x?λu=常數 給出。
- 通解:通過求解特征值問題和對角化(或類似方法)得到。通解形式為 U ( u , x ) = ∑ k f k ( x ? λ k u ) v k \mathbf{U}(u, x) = \sum_{k} f_k(x - \lambda_k u) \mathbf{v}_k U(u,x)=k∑?fk?(x?λk?u)vk?,其中 λ k \lambda_k λk? 是特征值, v k \mathbf{v}_k vk? 是相應的特征向量, f k f_k fk? 是任意可微函數。
下面針對每個矩陣 A A A 求解特征值并寫出通解。
1. 對于 A 1 = ( 3 2 1 0 2 1 0 0 1 ) A_1 = \begin{pmatrix} 3 & 2 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix} A1?=???300?220?111????
- 特征值: λ 1 = 3 \lambda_1 = 3 λ1?=3, λ 2 = 2 \lambda_2 = 2 λ2?=2, λ 3 = 1 \lambda_3 = 1 λ3?=1(全部實數且互異)。
- 特征向量:
- λ 1 = 3 \lambda_1 = 3 λ1?=3: v 1 = ( 1 0 0 ) \mathbf{v}_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} v1?=???100????
- λ 2 = 2 \lambda_2 = 2 λ2?=2: v 2 = ( ? 2 1 0 ) \mathbf{v}_2 = \begin{pmatrix} -2 \\ 1 \\ 0 \end{pmatrix} v2?=????210????
- λ 3 = 1 \lambda_3 = 1 λ3?=1: v 3 = ( 1 ? 2 2 ) \mathbf{v}_3 = \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix} v3?=???1?22????
- 通解:
U ( u , x ) = f 1 ( x ? 3 u ) ( 1 0 0 ) + f 2 ( x ? 2 u ) ( ? 2 1 0 ) + f 3 ( x ? u ) ( 1 ? 2 2 ) \mathbf{U}(u, x) = f_1(x - 3u) \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + f_2(x - 2u) \begin{pmatrix} -2 \\ 1 \\ 0 \end{pmatrix} + f_3(x - u) \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix} U(u,x)=f1?(x?3u)???100????+f2?(x?2u)????210????+f3?(x?u)???1?22????
即分量形式:
{ u 1 ( u , x ) = f 1 ( x ? 3 u ) ? 2 f 2 ( x ? 2 u ) + f 3 ( x ? u ) u 2 ( u , x ) = f 2 ( x ? 2 u ) ? 2 f 3 ( x ? u ) u 3 ( u , x ) = 2 f 3 ( x ? u ) \begin{cases} u_1(u, x) = f_1(x - 3u) - 2 f_2(x - 2u) + f_3(x - u) \\ u_2(u, x) = f_2(x - 2u) - 2 f_3(x - u) \\ u_3(u, x) = 2 f_3(x - u) \end{cases} ??????u1?(u,x)=f1?(x?3u)?2f2?(x?2u)+f3?(x?u)u2?