算法-基礎算法-遞歸算法(Python)

文章目錄

  • 前言
  • 遞歸和數學歸納法
  • 遞歸三步走
  • 遞歸的注意點
    • 避免棧溢出
    • 避免重復運算
  • 題目
    • 斐波那契數
    • 反轉鏈表


前言

??遞歸(Recursion):指的是一種通過重復將原問題分解為同類的子問題而解決的方法。在絕大數編程語言中,可以通過在函數中再次調用函數自身的方式來實現遞歸。
??舉個簡單的例子來了解一下遞歸算法。比如階乘的計算方法在數學上的定義為:

def fact(n):if n == 0:return 1return n * fact(n - 1)

以 n=6為例,上述代碼中階乘函數的計算過程如下:

fact(6)
= 6 * fact(5)
= 6 * (5 * fact(4))
= 6 * (5 * (4 * fact(3)))
= 6 * (5 * (4 * (3 * fact(2))))
= 6 * (5 * (4 * (3 * (2 * fact(1)))))
= 6 * (5 * (4 * (3 * (2 * (1 * fact(0))))))
= 6 * (5 * (4 * (3 * (2 * (1 * 1)))))
= 6 * (5 * (4 * (3 * (2 * 1))))
= 6 * (5 * (4 * (3 * 2)))
= 6 * (5 * (4 * 6))
= 6 * (5 * 24)
= 6 * 120
= 720

??根據上面的描述,我們可以把階乘函數的遞歸計算過程分為兩個部分:

  1. 先逐層向下調用自身,直到達到結束條件(即n==0。
  2. 然后再向上逐層返回結果,直到返回原問題的解(即返回 fact(6)==720
    這兩個部分也可以叫做「遞推過程」和「回歸過程」,如下面兩幅圖所示:

??如上面所說,我們可以把「遞歸」分為兩個部分:「遞推過程」和「回歸過程」。
??? 遞推過程:指的是將原問題一層一層地分解為與原問題形式相同、規模更小的子問題,直到達到結束條件時停止,此時返回最底層子問題的解。
??? 回歸過程:指的是從最底層子問題的解開始,逆向逐一回歸,最終達到遞推開始時的原問題,返回原問題的解。
??「遞推過程」和「回歸過程」是遞歸算法的精髓。從這個角度來理解遞歸,遞歸的基本思想就是: 把規模大的問題不斷分解為子問題來解決。
??同時,因為解決原問題和不同規模的小問題往往使用的是相同的方法,所以就產生了函數調用函數自身的情況,這也是遞歸的定義所在。

遞歸和數學歸納法

??遞歸的數學模型其實就是「數學歸納法」。這里簡單復習一下數學歸納法的證明步驟:
??1.證明當n=b (b 為基本情況,通常為 0 或者 1)時,命題成立。
??2.證明n>b 時,假設n=k時命題成立,那么可以推導出n=k+1時命題成立;這一步不是直接證明的,而是先假設n=k時命題成立,利用這個條件,可以推論出n=k+1時命題成立。
??通過以上兩步證明,就可以說:當n>=b 時,命題都成立。
??我們可以從「數學歸納法」的角度來解釋遞歸:
??1.遞歸終止條件:數學歸納法第一步中的n=b,可以直接得出結果。
??2.遞推過程:數學歸納法第二步中的假設部分(假設n=k時命題成立),也就是假設我們當前已經知道了n=k時的計算結果。
??3.回歸過程:數學歸納法第二步中的推論部分,根據n=k推論出n=k+1)也就是根據下一層的結果,計算出上一層的結果。

遞歸三步走

??遞歸的基本思想就是: 把規模大的問題不斷分解為子問題來解決。 那么,在寫遞歸的時候,我們可以按照這個思想來書寫遞歸,具體步驟如下:
??1. 寫出遞推公式:找到將原問題分解為子問題的規律,并且根據規律寫出遞推公式。
??2. 明確終止條件:推敲出遞歸的終止條件,以及遞歸終止時的處理方法。
??3. 將遞推公式和終止條件翻譯成代碼:
????1. 定義遞歸函數(明確函數意義、傳入參數、返回結果等)。
????2. 書寫遞歸主體(提取重復的邏輯,縮小問題規模)。
????3. 明確遞歸終止條件(給出遞歸終止條件,以及遞歸終止時的處理方法)。

遞歸的注意點

避免棧溢出

??在程序執行中,遞歸是利用堆棧來實現的。每一次遞推都需要一個棧空間來保存調用記錄,每當進入一次函數調用,棧空間就會加一層棧幀。每一次回歸,棧空間就會減一層棧幀。由于系統中的棧空間大小不是無限的,所以,如果遞歸調用的次數過多,會導致棧空間溢出。
??為了避免棧溢出,我們可以在代碼中限制遞歸調用的最大深度來解決問題。當遞歸調用超過一定深度時(比如 100)之后,不再進行遞歸,而是直接返回報錯。
??當然這種做法并不能完全避免棧溢出,也無法完全解決問題,因為系統允許的最大遞歸深度跟當前剩余的占空間有關,事先無法計算。
??如果使用遞歸算法實在無法解決問題,我們可以考慮將遞歸算法變為非遞歸算法(即遞推算法)來解決棧溢出的問題。

避免重復運算

??在使用遞歸算法時,還可能會出現重復運算的問題。
??比如斐波那契數列的定義是

??從圖中可以看出:想要計算 f(5),需要先計算 f(3) 和 f(4),而在計算 f(4) 時還需要計算 f(3),這樣f(3) 就進行了多次計算。同理 f(0)、f(1)、f(2) 都進行了多次計算,就導致了重復計算問題。
??為了避免重復計算,我們可以使用一個緩存(哈希表、集合或數組)來保存已經求解過的 f(k) 的結果,這也是動態規劃算法中的做法。當遞歸調用用到f(k) 時,先查看一下之前是否已經計算過結果,如果已經計算過,則直接從緩存中取值返回,而不用再遞推下去,這樣就避免了重復計算問題。

題目

斐波那契數

??遞推三步走策略,寫出對應的遞歸代碼。
??1寫出遞推公式:f(n)=f(n-1)+f(n-2)
??2 明確終止條件:f(0)=0,f(1)=1
??3 翻譯為遞歸代碼:
????1. 定義遞歸函數:fib(self, n) 表示輸入參數為問題的規模 n,返回結果為第 n 個斐波那契數。
????2. 書寫遞歸主體:return self.fib(n - 1) + self.fib(n - 2)。
????明確遞歸終止條件:
????1. if n == 0: return 0
????2. if n == 1: return 1

class Solution:def fib(self, n: int) -> int:if n == 0:return 0if n == 1:return 1return self.fib(n - 1) + self.fib(n - 2)

反轉鏈表

??描述:給定一個單鏈表的頭節點 head。
??要求:將該單鏈表進行反轉。可以迭代或遞歸地反轉鏈表。
示例
輸入:head = [1,2,3,4,5]
輸出:[5,4,3,2,1]
解釋:
翻轉前 1->2->3->4->5->NULL
反轉后 5->4->3->2->1->NULL

具體做法如下:

  1. 首先定義遞歸函數含義為:將鏈表反轉,并返回反轉后的頭節點。
  2. 然后從 head.next 的位置開始調用遞歸函數,即將 head.next 為頭節點的鏈表進行反轉,并返回該鏈表的頭節點。
  3. 遞歸到鏈表的最后一個節點,將其作為最終的頭節點,即為 new_head。
  4. 在每次遞歸函數返回的過程中,改變 head 和 head.next 的指向關系。也就是將 head.next 的next指針先指向當前節點 head,即 head.next.next = head 。
  5. 然后讓當前節點 head 的 next 指針指向 None,從而實現從鏈表尾部開始的局部反轉。
  6. 當遞歸從末尾開始順著遞歸棧的退出,從而將整個鏈表進行反轉。
  7. 最后返回反轉后的鏈表頭節點 new_head。
1.class?Solution:
2.????def?reverseList(self,?head:?ListNode)?->?ListNode:
3.????????if?head?==?None?or?head.next?==?None:
4.????????????return?head
5.????????new_head?=?self.reverseList(head.next)
6.????????head.next.next?=?head
7.????????head.next?=?None
8.????????return?new_head

本文來自互聯網用戶投稿,該文觀點僅代表作者本人,不代表本站立場。本站僅提供信息存儲空間服務,不擁有所有權,不承擔相關法律責任。
如若轉載,請注明出處:http://www.pswp.cn/pingmian/86808.shtml
繁體地址,請注明出處:http://hk.pswp.cn/pingmian/86808.shtml
英文地址,請注明出處:http://en.pswp.cn/pingmian/86808.shtml

如若內容造成侵權/違法違規/事實不符,請聯系多彩編程網進行投訴反饋email:809451989@qq.com,一經查實,立即刪除!

相關文章

TVFEMD-CPO-TCN-BiLSTM多輸入單輸出模型

47-TVFEMD-CPO-TCN-BiLSTM多輸入單輸出模型 適合單變量,多變量時間序列預測模型(可改進,加入各種優化算法) 時變濾波的經驗模態分解TVFEMD時域卷積TCN雙向長短期記憶網絡BiLSTM時間序列預測模型 另外以及有 TCN-BILSTM …

深入淺出Node.js中間件機制

我們用一個實際的例子來看看中間件是如何運作的。假設我們有一個非常簡單的Express應用,它只有兩個中間件函數: const express require(express); const app express();app.use((req, res, next) > {console.log(第一個中間件);next(); });app.use…

Vue-15-前端框架Vue之應用基礎編程式路由導航

文章目錄 1 RouterLink的replace屬性1.1 App.vue1.2 應用效果2 編程式路由導航2.1 場景一Home.vue2.2 場景二News.vue3 路由重定向3.1 index.ts3.2 Detail.vue3.3 About.vue1 RouterLink的replace屬性 路由每次跳轉都有記錄,默認是push,可以改為replace。 RouterLink支持兩…

android14 設置下連續點擊5次Settings標題跳轉到撥號界面

部分項目隱藏了撥號器,但開發者需要間距跳轉到撥號界面 設置一級界面: packages/apps/Settings/src/com/android/settings/homepage/SettingsHomepageActivity.java 通過dispatchTouchEvent方法先獲取Settings標題的區域X,Y數據。 import java.util.Set…

MP分頁和連表常用寫法

1. 分頁查詢 方案一&#xff1a;MyBatis XML MyBatis 內置的使用方式&#xff0c;步驟如下&#xff1a; ① 創建 AdminUserMapper.xml 文件&#xff0c;編寫兩個 SQL 查詢語句&#xff1a; <?xml version"1.0" encoding"UTF-8"?> <!DOCTYPE m…

使用 Spring AI Alibaba構建 AI Code Review 應用

很早的時候就想著用AI來做Code Review&#xff0c;最近也看到了一些不錯的實現&#xff0c;但是沒有一個使用Java來構建的&#xff0c;看的比較費勁&#xff0c;雖然說語言只是一種工具&#xff0c;但是還是想用Java重新寫一遍&#xff0c;正好最近Spring AI Alibaba出了正式版…

力扣1590. 使數組和能被 P 整除

這一題的難點在于模運算&#xff0c;對模運算足夠了解&#xff0c;對式子進行變換就很容易得到結果&#xff0c;本質上還是一道前綴和哈希表的題 這里重點講一下模運算。 常見的模運算的用法 (a-b)%k0等價于 a%kb%k 而在這一題中由于多了一個len&#xff0c;&#xff08;數組的…

FPGA內部資源介紹

FPGA內部資源介紹 目錄 邏輯資源塊LUT&#xff08;查找表&#xff09;加法器寄存器MUX&#xff08;復用器&#xff09;時鐘網絡資源 全局時鐘網絡資源區域時鐘網絡資源IO時鐘網絡資源 時鐘處理單元BLOCK RAMDSP布線資源接口資源 用戶IO資源專用高速接口資源 總結 1. 邏輯資源…

CSS 列表

CSS 列表 引言 CSS 列表是網頁設計中常用的一種布局方式&#xff0c;它能夠幫助我們以更靈活、更美觀的方式展示數據。本文將詳細介紹 CSS 列表的創建、樣式設置以及常用技巧&#xff0c;幫助您更好地掌握這一重要技能。 CSS 列表概述 CSS 列表主要包括兩種類型&#xff1a…

spring中的@Cacheable緩存

1. 使用方法 在方法上面加上注解Cacheable&#xff0c; OverrideCacheable(cacheNames "userCache", key "#id")public User getUserById(Long id) {System.out.println("查詢數據庫了");return getById(id);}如果你的項目中引入了&#xff…

Node.js特訓專欄-實戰進階:9.MySQL連接池配置與優化

?? 歡迎來到 Node.js 實戰專欄!在這里,每一行代碼都是解鎖高性能應用的鑰匙,讓我們一起開啟 Node.js 的奇妙開發之旅! Node.js 特訓專欄主頁 專欄內容規劃詳情 MySQL連接池配置與優化:提升數據庫交互性能的關鍵 一、MySQL連接池基礎概念 1.1 什么是連接池? 連接池是…

【innovus基礎】- 如何手動畫線?

后端實現的過程就是將邏輯連線變為物理的金屬連線的過程。 1、打開Pin shape的Visible 和 Selected開關&#xff0c;使其可見并可選 2、選中想要畫線的IOCell 3、鼠標選中對應的pin 4、使用dbGet 獲取此pin腳邏輯連線net的名字&#xff1b; dbGet selected.net.name 5、使用畫…

element-plus限制日期可選范圍(這里以7天為例)

element-plus日期范圍限制功能實現邏輯 1. 需求&#xff1a;通過限制時間的可選范圍減少請求的數據量 2. 實現效果&#xff1a; 日期選擇器做限制 3. 代碼邏輯&#xff1a; 思路&#xff1a;通過calendar-change獲取開始日期&#xff0c;然后通過disabled-date禁用不滿足條件…

機器學習2-梯度下降與反向傳播

損失函數 與 平均方差函數 傻傻分不清 損失函數是概念&#xff1b;平均方差函數是具體的實現 損失函數&#xff08;如均方誤差 MSE&#xff09;用于衡量模型預測值與真實值之間的差距。損失越小&#xff0c;說明模型對當前數據的擬合越好。 但模型并非擬合度越高越好&#xf…

安全生產風險管控平臺:企業安全管理的智能化解決方案

在工業生產、建筑施工、能源化工等領域&#xff0c;安全生產是企業可持續發展的基石。然而&#xff0c;傳統安全管理模式依賴人工巡檢、紙質記錄和事后處理&#xff0c;難以滿足現代化企業的高效風險管控需求。安全生產風險管控平臺應運而生&#xff0c;它利用物聯網、大數據、…

如何保證數據庫與 Redis 緩存的一致性?

在現代互聯網應用中&#xff0c;Redis 緩存幾乎是性能優化的標配。但在使用過程中&#xff0c;一個繞不過去的問題就是&#xff1a; 如何保證 Redis 緩存與數據庫之間的數據一致性&#xff1f; 特別是在高并發場景下&#xff0c;讀寫操作錯位可能導致緩存中出現臟數據&#xff…

現代 JavaScript (ES6+) 入門到實戰(三):字符串與對象的魔法升級—模板字符串/結構賦值/展開運算符

在前兩篇&#xff0c;我們升級了變量和函數。今天&#xff0c;我們要給 JavaScript 中最常用的兩種數據類型——字符串&#xff08;String&#xff09;和對象&#xff08;Object&#xff09;——裝備上 ES6 帶來的強大魔法。 準備好告別丑陋的 號拼接和重復的對象屬性賦值了嗎…

GitLab 備份恢復與配置遷移詳盡教程(實戰版)

&#x1f6e0; GitLab 備份恢復與配置遷移詳盡教程&#xff08;實戰版&#xff09; &#x1f9f1; 一、環境準備 1.1 檢查版本一致性 恢復目標機 GitLab 版本必須與備份文件所用版本一致或兼容&#xff08;推薦相同版本&#xff09; 查看當前 GitLab 版本&#xff1a; sudo g…

英飛凌高性能BMS解決方案助力汽車電動化

隨著電動汽車越來越被大眾接受&#xff0c;車輛電氣化、智能化程度越來越高&#xff0c;如何提高電動汽車的續航里程&#xff0c;同時保障車輛安全可靠持久運行是當前最主要的技術難題之一。而先進的電池管理系統 (BMS)有助于克服電動汽車廣泛普及的關鍵障礙&#xff1a;續航里…

react + ant-design實現數字對比動畫效果:當新獲取的數字比之前展示的數字多或少2時,顯示“+2”或“-2”的動畫效果

react ant-design實現數字對比動畫效果&#xff1a;當新獲取的數字比之前展示的數字多或少2時&#xff0c;顯示“2”或“-2”的動畫效果 1. 創建獨立的 AnimatedValue 組件 // components/AnimatedValue/index.jsx import React, { useState, useEffect, useRef } from reac…