pytorch 圖像數據集管理

目錄

1.數據集的管理說明

2.數據集Dataset類說明

3.圖像分類常用的類?ImageFolder


1.數據集的管理說明

????????pytorch使用Dataset來管理訓練和測試數據集,前文說過?

torchvision.datasets.MNIST

????????這些?torchvision.datasets里面的數據集都是繼承Dataset而來,對Datasetd 管理使用DataLoader我們使用的的時候,只需要把Dataset類放在DataLoader這個容器里面,在訓練的時候 for循環從DataLoader容器里面取出批次的數據,對模型進行訓練。

2.數據集Dataset類說明

????????我們可以繼承Dataset類,對訓練和測試數據進行管理,繼承Dataset示例:

import torch
from torch.utils.data import Dataset
from torchvision import datasets
from torch.utils.data import DataLoader
from torchvision import transforms
import os
import cv2
#繼承from torch.utils.data import Dataset
class CDataSet(Dataset):def __init__(self,path):self.path = pathself.list = os.listdir(path)self.len = len(self.list)self.name = ['cloudy','rain','shine','sunrise']self.trans = transforms.ToTensor()def __len__(self):return self.lendef __getitem__(self, item):self.imgpath = os.path.join(self.path,self.list[item])print(self.imgpath)img = cv2.imread(self.imgpath)img = cv2.cvtColor(img,cv2.COLOR_BGR2RGB)img = cv2.resize(img,(100,100))img = self.trans(img)for i,n in enumerate(self.name):if n in self.imgpath:label = i+1breakreturn img,labelds = CDataSet(r'E:\test\pythonProject\dataset\cloudy')
dl = DataLoader(ds,batch_size=16,shuffle=True)
print(len(ds))
print(len(dl))
print(type(ds))
print(type(dl))
print(next(iter(dl)))'''
D:\anaconda3\python.exe E:\test\pythonProject\test.py 
300
19
<class '__main__.CDataSet'>
<class 'torch.utils.data.dataloader.DataLoader'>
E:\test\pythonProject\dataset\cloudy\cloudy294.jpg
E:\test\pythonProject\dataset\cloudy\cloudy156.jpg
E:\test\pythonProject\dataset\cloudy\cloudy149.jpg
E:\test\pythonProject\dataset\cloudy\cloudy148.jpg
E:\test\pythonProject\dataset\cloudy\cloudy3.jpg
E:\test\pythonProject\dataset\cloudy\cloudy106.jpg
E:\test\pythonProject\dataset\cloudy\cloudy137.jpg
E:\test\pythonProject\dataset\cloudy\cloudy276.jpg
E:\test\pythonProject\dataset\cloudy\cloudy147.jpg
E:\test\pythonProject\dataset\cloudy\cloudy8.jpg
E:\test\pythonProject\dataset\cloudy\cloudy164.jpg
E:\test\pythonProject\dataset\cloudy\cloudy293.jpg
E:\test\pythonProject\dataset\cloudy\cloudy116.jpg
E:\test\pythonProject\dataset\cloudy\cloudy56.jpg
E:\test\pythonProject\dataset\cloudy\cloudy187.jpg
E:\test\pythonProject\dataset\cloudy\cloudy177.jpg
[tensor([[[[0.2235, 0.2471, 0.3569,  ..., 0.1490, 0.1373, 0.1373],[0.2902, 0.4039, 0.4078,  ..., 0.1529, 0.1373, 0.1294],[0.3294, 0.4941, 0.4000,  ..., 0.1529, 0.1333, 0.1137],...,[0.0118, 0.0118, 0.0118,  ..., 0.0078, 0.0078, 0.0078],[0.0118, 0.0118, 0.0118,  ..., 0.0039, 0.0039, 0.0039],[0.0118, 0.0118, 0.0118,  ..., 0.0039, 0.0039, 0.0039]],[[0.2196, 0.2471, 0.3608,  ..., 0.1725, 0.1608, 0.1608],[0.2824, 0.3961, 0.4118,  ..., 0.1765, 0.1608, 0.1529],[0.3216, 0.4863, 0.4039,  ..., 0.1765, 0.1569, 0.1373],...,[0.0235, 0.0235, 0.0235,  ..., 0.0078, 0.0078, 0.0078],[0.0235, 0.0235, 0.0235,  ..., 0.0078, 0.0078, 0.0078],[0.0235, 0.0235, 0.0235,  ..., 0.0157, 0.0196, 0.0157]],[[0.3098, 0.3412, 0.4510,  ..., 0.2196, 0.2078, 0.2078],[0.3686, 0.4824, 0.4980,  ..., 0.2235, 0.2078, 0.2000],[0.4078, 0.5725, 0.4863,  ..., 0.2235, 0.2039, 0.1843],...,[0.0000, 0.0000, 0.0000,  ..., 0.0157, 0.0157, 0.0157],[0.0000, 0.0000, 0.0000,  ..., 0.0157, 0.0157, 0.0157],[0.0000, 0.0000, 0.0000,  ..., 0.0078, 0.0039, 0.0078]]],[[[0.7059, 0.6902, 0.6824,  ..., 0.5961, 0.6000, 0.6118],[0.6980, 0.6824, 0.6745,  ..., 0.6039, 0.6078, 0.6196],[0.6863, 0.6706, 0.6588,  ..., 0.6196, 0.6235, 0.6353],...,[0.2706, 0.2941, 0.2706,  ..., 0.2745, 0.2745, 0.2706],[0.2745, 0.2745, 0.2667,  ..., 0.2784, 0.2902, 0.2745],[0.2784, 0.2706, 0.2784,  ..., 0.2824, 0.3020, 0.2784]],[[0.7176, 0.7020, 0.6941,  ..., 0.6235, 0.6275, 0.6392],[0.7098, 0.6941, 0.6863,  ..., 0.6314, 0.6353, 0.6471],[0.6941, 0.6863, 0.6706,  ..., 0.6471, 0.6510, 0.6627],...,[0.2784, 0.3020, 0.2824,  ..., 0.2824, 0.2824, 0.2784],[0.2824, 0.2824, 0.2745,  ..., 0.2863, 0.2980, 0.2824],[0.2863, 0.2784, 0.2863,  ..., 0.2902, 0.3098, 0.2824]],[[0.7412, 0.7294, 0.7176,  ..., 0.6471, 0.6510, 0.6627],[0.7373, 0.7216, 0.7137,  ..., 0.6549, 0.6588, 0.6706],[0.7255, 0.7098, 0.6980,  ..., 0.6706, 0.6745, 0.6863],...,[0.1961, 0.2196, 0.2000,  ..., 0.2000, 0.2000, 0.1961],[0.2000, 0.2000, 0.1922,  ..., 0.2039, 0.2157, 0.2000],[0.2039, 0.1961, 0.2039,  ..., 0.2078, 0.2275, 0.2039]]],[[[0.3176, 0.3255, 0.3294,  ..., 0.5529, 0.5255, 0.4824],[0.3098, 0.3176, 0.3216,  ..., 0.5608, 0.5255, 0.4824],[0.3059, 0.3098, 0.3098,  ..., 0.5686, 0.4941, 0.4588],...,[0.4510, 0.4549, 0.3176,  ..., 0.2627, 0.3059, 0.3333],[0.3843, 0.4980, 0.4000,  ..., 0.3804, 0.4235, 0.3804],[0.4549, 0.6353, 0.7333,  ..., 0.4902, 0.5882, 0.6627]],[[0.3333, 0.3373, 0.3412,  ..., 0.5961, 0.5765, 0.5333],[0.3255, 0.3333, 0.3373,  ..., 0.6039, 0.5686, 0.5333],[0.3216, 0.3255, 0.3255,  ..., 0.6157, 0.5412, 0.5098],...,[0.4275, 0.4275, 0.3255,  ..., 0.2627, 0.2902, 0.3176],[0.3804, 0.4510, 0.3961,  ..., 0.3529, 0.3843, 0.3529],[0.4275, 0.5333, 0.6039,  ..., 0.4353, 0.5098, 0.5569]],[[0.3804, 0.3961, 0.4000,  ..., 0.6667, 0.6431, 0.6000],[0.3725, 0.3804, 0.3843,  ..., 0.6745, 0.6392, 0.6000],[0.3686, 0.3725, 0.3725,  ..., 0.6784, 0.6118, 0.5843],...,[0.3843, 0.3843, 0.3255,  ..., 0.2353, 0.2549, 0.2706],[0.3412, 0.3882, 0.3725,  ..., 0.2902, 0.3098, 0.2863],[0.3804, 0.4039, 0.4275,  ..., 0.3294, 0.3333, 0.3529]]],...,[[[0.5843, 0.6000, 0.6471,  ..., 0.3294, 0.3255, 0.3333],[0.5412, 0.5529, 0.6627,  ..., 0.3373, 0.3333, 0.3373],[0.5137, 0.5098, 0.6235,  ..., 0.3451, 0.3451, 0.3412],...,[0.2980, 0.1098, 0.0824,  ..., 0.0000, 0.0000, 0.0000],[0.0078, 0.0000, 0.0039,  ..., 0.0000, 0.0000, 0.0000],[0.0000, 0.0000, 0.0000,  ..., 0.0000, 0.0000, 0.0000]],[[0.5843, 0.6000, 0.6471,  ..., 0.3294, 0.3255, 0.3333],[0.5412, 0.5529, 0.6627,  ..., 0.3373, 0.3333, 0.3373],[0.5137, 0.5098, 0.6235,  ..., 0.3451, 0.3451, 0.3412],...,[0.2980, 0.1098, 0.0824,  ..., 0.0000, 0.0000, 0.0000],[0.0078, 0.0000, 0.0039,  ..., 0.0000, 0.0000, 0.0000],[0.0000, 0.0000, 0.0000,  ..., 0.0000, 0.0000, 0.0000]],[[0.5843, 0.6000, 0.6471,  ..., 0.3294, 0.3255, 0.3333],[0.5412, 0.5529, 0.6627,  ..., 0.3373, 0.3333, 0.3373],[0.5137, 0.5098, 0.6235,  ..., 0.3451, 0.3451, 0.3412],...,[0.2980, 0.1098, 0.0824,  ..., 0.0000, 0.0000, 0.0000],[0.0078, 0.0000, 0.0039,  ..., 0.0000, 0.0000, 0.0000],[0.0000, 0.0000, 0.0000,  ..., 0.0000, 0.0000, 0.0000]]],[[[0.5608, 0.5843, 0.6196,  ..., 0.4431, 0.4314, 0.4275],[0.5529, 0.5725, 0.6039,  ..., 0.4510, 0.4392, 0.4392],[0.5569, 0.5647, 0.5922,  ..., 0.4588, 0.4510, 0.4549],...,[0.1020, 0.0784, 0.0627,  ..., 0.1255, 0.1373, 0.1216],[0.0431, 0.0627, 0.0510,  ..., 0.0902, 0.1176, 0.1294],[0.0902, 0.1059, 0.0588,  ..., 0.0902, 0.0941, 0.1020]],[[0.6275, 0.6510, 0.6863,  ..., 0.5020, 0.4902, 0.4863],[0.6235, 0.6392, 0.6706,  ..., 0.5098, 0.4980, 0.4980],[0.6196, 0.6314, 0.6588,  ..., 0.5176, 0.5098, 0.5098],...,[0.1373, 0.1176, 0.0980,  ..., 0.1569, 0.1725, 0.1569],[0.0784, 0.0941, 0.0863,  ..., 0.1255, 0.1529, 0.1647],[0.1255, 0.1412, 0.0941,  ..., 0.1255, 0.1294, 0.1373]],[[0.6039, 0.6275, 0.6627,  ..., 0.4824, 0.4706, 0.4667],[0.5961, 0.6157, 0.6471,  ..., 0.4902, 0.4784, 0.4784],[0.5961, 0.6078, 0.6353,  ..., 0.4980, 0.4902, 0.4941],...,[0.1255, 0.1020, 0.0863,  ..., 0.1451, 0.1608, 0.1451],[0.0667, 0.0863, 0.0745,  ..., 0.1137, 0.1412, 0.1529],[0.1137, 0.1294, 0.0824,  ..., 0.1137, 0.1176, 0.1255]]],[[[0.1922, 0.1882, 0.1843,  ..., 0.1608, 0.1647, 0.1686],[0.1961, 0.1922, 0.1882,  ..., 0.1686, 0.1686, 0.1725],[0.2000, 0.2000, 0.1961,  ..., 0.1804, 0.1804, 0.1843],...,[0.3686, 0.3882, 0.3961,  ..., 0.3098, 0.3098, 0.3098],[0.3765, 0.3882, 0.3882,  ..., 0.2980, 0.2980, 0.2980],[0.3725, 0.3804, 0.3804,  ..., 0.2941, 0.2941, 0.2941]],[[0.1922, 0.1882, 0.1843,  ..., 0.1608, 0.1647, 0.1686],[0.1961, 0.1922, 0.1882,  ..., 0.1686, 0.1686, 0.1725],[0.2000, 0.2000, 0.1961,  ..., 0.1804, 0.1804, 0.1843],...,[0.3686, 0.3882, 0.3961,  ..., 0.3098, 0.3098, 0.3098],[0.3765, 0.3882, 0.3882,  ..., 0.2980, 0.2980, 0.2980],[0.3725, 0.3804, 0.3804,  ..., 0.2941, 0.2941, 0.2941]],[[0.1922, 0.1882, 0.1843,  ..., 0.1608, 0.1647, 0.1686],[0.1961, 0.1922, 0.1882,  ..., 0.1686, 0.1686, 0.1725],[0.2000, 0.2000, 0.1961,  ..., 0.1804, 0.1804, 0.1843],...,[0.3686, 0.3882, 0.3961,  ..., 0.3098, 0.3098, 0.3098],[0.3765, 0.3882, 0.3882,  ..., 0.2980, 0.2980, 0.2980],[0.3725, 0.3804, 0.3804,  ..., 0.2941, 0.2941, 0.2941]]]]), tensor([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1])]進程已結束,退出代碼為 0'''

這里用到的文件夾如圖:

注意:這里主要寫?

def __init__(self,path):
def __len__(self):
def __getitem__(self, item):

這三個函數

3.圖像分類常用的類?ImageFolder

????????ImageFolder?使用示例:

????????首先整理圖像分類分別放在不同的文件夾里面:

然后直接使用?ImageFolder?裝載?dataset?文件夾,就會自動分類圖片形成數據集可以直接使用:

import torch
from torch.utils.data import Dataset
from torchvision import datasets
from torch.utils.data import DataLoader
from torchvision import transformstrans = transforms.Compose([transforms.Resize((96,96)),transforms.ToTensor()])
ds = datasets.ImageFolder("./dataset",transform=trans)test_ds,train_ds = torch.utils.data.random_split(ds,[len(ds)//5,len(ds)-len(ds)//5])#注意這里需要整除因為這里使用整數
dl = DataLoader(train_ds,batch_size=16,shuffle=True)print(ds.classes)
print(ds.class_to_idx)
print(len(test_ds))
print(len(train_ds))
print(next(iter(dl)))'''
D:\anaconda3\python.exe E:\test\pythonProject\test.py 
['cloudy', 'rain', 'shine', 'sunrise']
{'cloudy': 0, 'rain': 1, 'shine': 2, 'sunrise': 3}
225
900
[tensor([[[[0.0980, 0.0745, 0.0706,  ..., 0.4431, 0.4314, 0.4157],[0.0627, 0.0667, 0.0706,  ..., 0.4941, 0.4510, 0.4510],[0.1529, 0.1451, 0.1412,  ..., 0.3882, 0.4275, 0.4510],...,[0.1176, 0.1176, 0.1176,  ..., 0.1333, 0.1255, 0.1608],[0.1137, 0.1137, 0.1137,  ..., 0.1373, 0.1569, 0.2039],[0.1098, 0.1098, 0.1098,  ..., 0.1294, 0.1961, 0.2824]],[[0.2745, 0.2314, 0.2118,  ..., 0.3843, 0.3725, 0.3569],[0.1922, 0.1765, 0.1686,  ..., 0.4353, 0.3922, 0.3922],[0.2275, 0.2000, 0.1843,  ..., 0.3294, 0.3725, 0.3961],...,[0.0353, 0.0353, 0.0353,  ..., 0.0784, 0.0667, 0.1059],[0.0314, 0.0314, 0.0314,  ..., 0.0784, 0.0824, 0.1216],[0.0275, 0.0275, 0.0275,  ..., 0.0745, 0.1137, 0.1725]],[[0.4471, 0.4118, 0.3961,  ..., 0.3647, 0.3529, 0.3373],[0.3490, 0.3373, 0.3333,  ..., 0.4235, 0.3804, 0.3765],[0.3529, 0.3333, 0.3255,  ..., 0.3216, 0.3608, 0.3882],...,[0.0235, 0.0235, 0.0235,  ..., 0.0431, 0.0353, 0.0549],[0.0196, 0.0196, 0.0196,  ..., 0.0471, 0.0392, 0.0392],[0.0157, 0.0157, 0.0157,  ..., 0.0353, 0.0549, 0.0706]]],[[[0.0941, 0.0941, 0.0196,  ..., 0.1490, 0.1961, 0.1490],[0.1059, 0.1137, 0.0471,  ..., 0.1529, 0.1412, 0.1176],[0.0745, 0.1255, 0.1059,  ..., 0.1569, 0.1373, 0.1176],...,[0.2196, 0.2549, 0.3059,  ..., 0.4000, 0.3922, 0.3765],[0.2118, 0.2471, 0.3020,  ..., 0.3804, 0.3686, 0.3608],[0.1922, 0.2235, 0.2784,  ..., 0.3882, 0.3843, 0.3725]],[[0.2000, 0.1725, 0.0431,  ..., 0.1686, 0.2196, 0.1569],[0.2196, 0.2039, 0.0706,  ..., 0.1765, 0.1647, 0.1373],[0.2000, 0.2275, 0.1373,  ..., 0.1804, 0.1608, 0.1412],...,[0.2157, 0.2510, 0.3059,  ..., 0.3804, 0.3686, 0.3647],[0.2118, 0.2471, 0.3020,  ..., 0.3686, 0.3529, 0.3569],[0.1922, 0.2235, 0.2784,  ..., 0.3843, 0.3804, 0.3686]],[[0.1961, 0.1765, 0.0627,  ..., 0.1725, 0.2196, 0.1647],[0.2118, 0.2039, 0.0941,  ..., 0.1804, 0.1647, 0.1451],[0.1882, 0.2235, 0.1569,  ..., 0.1843, 0.1608, 0.1608],...,[0.1961, 0.2314, 0.2980,  ..., 0.3804, 0.3686, 0.3608],[0.1961, 0.2314, 0.2941,  ..., 0.3647, 0.3529, 0.3490],[0.1843, 0.2118, 0.2706,  ..., 0.3765, 0.3725, 0.3608]]],[[[0.7804, 0.7804, 0.7804,  ..., 0.6627, 0.6588, 0.6549],[0.7765, 0.7765, 0.7765,  ..., 0.6588, 0.6549, 0.6510],[0.7725, 0.7725, 0.7725,  ..., 0.6471, 0.6431, 0.6431],...,[0.1216, 0.1333, 0.1490,  ..., 0.1647, 0.1647, 0.1608],[0.1216, 0.1255, 0.1451,  ..., 0.1725, 0.1725, 0.1765],[0.1176, 0.1255, 0.1451,  ..., 0.1686, 0.1569, 0.1451]],[[0.7843, 0.7843, 0.7843,  ..., 0.6667, 0.6627, 0.6588],[0.7804, 0.7804, 0.7804,  ..., 0.6627, 0.6588, 0.6549],[0.7765, 0.7765, 0.7765,  ..., 0.6510, 0.6471, 0.6471],...,[0.1608, 0.1490, 0.1373,  ..., 0.1686, 0.1686, 0.1647],[0.1569, 0.1451, 0.1294,  ..., 0.1765, 0.1765, 0.1804],[0.1569, 0.1412, 0.1294,  ..., 0.1725, 0.1608, 0.1490]],[[0.8039, 0.8039, 0.8039,  ..., 0.6863, 0.6824, 0.6784],[0.8000, 0.8000, 0.8000,  ..., 0.6824, 0.6784, 0.6745],[0.7961, 0.7961, 0.7961,  ..., 0.6706, 0.6667, 0.6667],...,[0.0706, 0.0667, 0.0745,  ..., 0.1059, 0.1059, 0.1020],[0.0745, 0.0667, 0.0745,  ..., 0.1137, 0.1137, 0.1176],[0.0745, 0.0706, 0.0745,  ..., 0.1098, 0.0980, 0.0863]]],...,[[[0.0275, 0.1059, 0.2157,  ..., 0.0196, 0.0196, 0.0196],[0.0235, 0.1020, 0.1765,  ..., 0.0235, 0.0235, 0.0196],[0.0196, 0.0902, 0.1255,  ..., 0.0314, 0.0314, 0.0275],...,[0.0784, 0.1059, 0.1255,  ..., 0.1294, 0.1020, 0.0745],[0.0745, 0.0863, 0.1020,  ..., 0.0627, 0.0588, 0.0431],[0.0588, 0.0667, 0.0824,  ..., 0.0667, 0.0627, 0.0353]],[[0.0275, 0.1059, 0.2157,  ..., 0.0157, 0.0157, 0.0157],[0.0235, 0.1020, 0.1765,  ..., 0.0235, 0.0235, 0.0196],[0.0196, 0.0902, 0.1255,  ..., 0.0314, 0.0314, 0.0275],...,[0.0588, 0.0863, 0.1059,  ..., 0.1059, 0.0824, 0.0549],[0.0549, 0.0667, 0.0824,  ..., 0.0471, 0.0431, 0.0275],[0.0392, 0.0471, 0.0627,  ..., 0.0588, 0.0510, 0.0275]],[[0.0275, 0.1059, 0.2157,  ..., 0.0275, 0.0275, 0.0235],[0.0235, 0.1020, 0.1765,  ..., 0.0314, 0.0314, 0.0275],[0.0196, 0.0902, 0.1255,  ..., 0.0392, 0.0392, 0.0353],...,[0.0471, 0.0745, 0.0941,  ..., 0.1059, 0.0824, 0.0549],[0.0431, 0.0549, 0.0706,  ..., 0.0431, 0.0392, 0.0235],[0.0275, 0.0353, 0.0510,  ..., 0.0510, 0.0471, 0.0235]]],[[[0.1412, 0.1412, 0.1412,  ..., 0.1647, 0.1686, 0.1765],[0.1451, 0.1373, 0.1333,  ..., 0.1647, 0.1686, 0.1765],[0.1490, 0.1412, 0.1373,  ..., 0.1725, 0.1765, 0.1843],...,[0.0039, 0.0039, 0.0039,  ..., 0.0118, 0.0078, 0.0078],[0.0039, 0.0039, 0.0039,  ..., 0.0078, 0.0039, 0.0039],[0.0039, 0.0039, 0.0039,  ..., 0.0078, 0.0039, 0.0039]],[[0.2118, 0.2078, 0.2078,  ..., 0.2353, 0.2353, 0.2353],[0.2157, 0.2118, 0.2078,  ..., 0.2392, 0.2392, 0.2431],[0.2196, 0.2157, 0.2118,  ..., 0.2431, 0.2431, 0.2431],...,[0.0039, 0.0039, 0.0039,  ..., 0.0118, 0.0078, 0.0078],[0.0039, 0.0039, 0.0039,  ..., 0.0078, 0.0039, 0.0039],[0.0039, 0.0039, 0.0039,  ..., 0.0078, 0.0039, 0.0039]],[[0.3137, 0.3137, 0.3216,  ..., 0.3373, 0.3373, 0.3255],[0.3176, 0.3137, 0.3216,  ..., 0.3412, 0.3412, 0.3412],[0.3137, 0.3176, 0.3294,  ..., 0.3451, 0.3451, 0.3451],...,[0.0039, 0.0039, 0.0039,  ..., 0.0118, 0.0078, 0.0078],[0.0039, 0.0039, 0.0039,  ..., 0.0078, 0.0039, 0.0039],[0.0039, 0.0039, 0.0039,  ..., 0.0078, 0.0039, 0.0039]]],[[[0.0157, 0.0157, 0.0157,  ..., 0.0980, 0.0941, 0.0824],[0.0196, 0.0196, 0.0196,  ..., 0.0980, 0.0941, 0.0824],[0.0235, 0.0235, 0.0235,  ..., 0.0980, 0.0941, 0.0824],...,[0.0078, 0.0078, 0.0039,  ..., 0.0157, 0.0196, 0.0196],[0.0039, 0.0039, 0.0039,  ..., 0.0157, 0.0118, 0.0039],[0.0000, 0.0000, 0.0000,  ..., 0.0157, 0.0078, 0.0000]],[[0.0510, 0.0510, 0.0510,  ..., 0.1294, 0.1255, 0.1333],[0.0549, 0.0549, 0.0549,  ..., 0.1294, 0.1255, 0.1333],[0.0588, 0.0588, 0.0588,  ..., 0.1294, 0.1255, 0.1333],...,[0.0078, 0.0078, 0.0039,  ..., 0.0118, 0.0157, 0.0157],[0.0039, 0.0039, 0.0039,  ..., 0.0118, 0.0078, 0.0000],[0.0000, 0.0000, 0.0000,  ..., 0.0118, 0.0039, 0.0000]],[[0.1647, 0.1647, 0.1647,  ..., 0.2824, 0.2784, 0.2706],[0.1686, 0.1686, 0.1686,  ..., 0.2824, 0.2784, 0.2706],[0.1725, 0.1725, 0.1725,  ..., 0.2824, 0.2784, 0.2706],...,[0.0157, 0.0157, 0.0118,  ..., 0.0353, 0.0392, 0.0392],[0.0118, 0.0118, 0.0118,  ..., 0.0353, 0.0314, 0.0235],[0.0078, 0.0078, 0.0078,  ..., 0.0353, 0.0275, 0.0196]]]]), tensor([3, 1, 0, 3, 3, 2, 1, 0, 0, 0, 2, 3, 0, 0, 3, 3])]進程已結束,退出代碼為 0'''

注意:這里使用函數

train_ds,test_ds = torch.utils.data.random_split(ds,[len(ds)//5,len(ds)-len(ds)//5])#注意這里需要整除,因為這里需要使用整數。

????????把數據集分為了訓練和測試數據集,從Dataset繼承的類都可以用這個分類,記住DatasetDataLoader這個基礎類是在torch里面,而關于圖片的處理類基本都在torchvision 里面,比如圖片的轉換到tensor,圖片放大縮小功能。

本文來自互聯網用戶投稿,該文觀點僅代表作者本人,不代表本站立場。本站僅提供信息存儲空間服務,不擁有所有權,不承擔相關法律責任。
如若轉載,請注明出處:http://www.pswp.cn/news/717208.shtml
繁體地址,請注明出處:http://hk.pswp.cn/news/717208.shtml
英文地址,請注明出處:http://en.pswp.cn/news/717208.shtml

如若內容造成侵權/違法違規/事實不符,請聯系多彩編程網進行投訴反饋email:809451989@qq.com,一經查實,立即刪除!

相關文章

【Qt】QTextEdit/QPlainTextEdit 實現 Tab 鍵多行縮進與反縮進

【Qt】QTextEdit/QPlainTextEdit 實現 Tab 鍵多行縮進與反縮進 文章目錄 I - 主要原理II - 代碼實現2.1 - 自定義類2.2 - 實現 Tab 縮進2.3 - 實現反縮進III - 參考鏈接I - 主要原理 由于 QTextEdit 和 QPlainTextEdit ,都無法實現多行選中縮進與反縮進,選中多行后,按下縮進…

[Redis]——Redis命令手冊set、list、sortedset

&#x1f333;List類型常見命令 LPUSH / RPUSH [KEY] [element] …… 向列表左側或者右側插入一個或多個元素 LPOP / RPOP [key] 刪除左邊或者右邊第一個元素 LRANGE [key] start end 返回索引start到end的元素&#xff08;索引從0開始&#xff09; BLPOP / BRPOP [key] [等…

【C++】類的默認成員函數(上)

&#x1f525;博客主頁&#xff1a; 小羊失眠啦. &#x1f3a5;系列專欄&#xff1a;《C語言》 《數據結構》 《C》 《Linux》 《Cpolar》 ??感謝大家點贊&#x1f44d;收藏?評論?? 文章目錄 一、默認成員函數二、構造函數構造函數的概念及特性 三、析構函數析構函數的特性…

續簡單學生管理系統、包裝類--day18

Day18 一、刪除的思考題 思考題&#xff1a;刪除功能可以省略第一步嗎&#xff1f;不可以 有第一步判斷學生信息合法性&#xff0c;如果信息不合法會直接結束返回 如果沒有第一步&#xff0c;將會在第二步判斷是否有該學生query循環匹配查找&#xff0c;數據量大情況&#xff…

藍橋杯倒計時 43天 - 前綴和,單調棧

最大數組和 算法思路&#xff1a;利用前綴和化簡 for 循環將 n^2 簡化成 nn&#xff0c;以空間換時間。枚舉每個 m&#xff0c;m是刪除最小兩個數&#xff0c;那k-m就是刪除最大數&#xff0c;m<k&#xff0c;求和最大的值。暴力就是枚舉 m-O(n)&#xff0c;計算前 n-(k-m)的…

PCSA時鐘控制集成之時鐘門控級別

這一部分描述了&#xff1a; ? 時鐘門控的級別。 ? 實現最大效果的時鐘門位置。 ? 實現有效和高效時鐘門控的集成方法。 時鐘樹是由時鐘緩沖器構建的&#xff0c;這些緩沖器在時鐘源&#xff08;時鐘輸入或PLL&#xff09;與時鐘終端&#xff08;寄存器或RAM&#xff09…

ULN2003(COM的作用)

單路內部電路原理圖 三極管多級放大電路&#xff0c;最大可達到500ma&#xff1b; 典型應用&#xff1a; ULN2003屬于灌電流驅動方式&#xff1b;輸入與輸出電平反向&#xff0c;下拉4K電阻&#xff0c;為解決單片機上電IO瞬間不穩定&#xff1b; COM端 1.可懸空&#xff1a…

Java面題總結7

spring事務什么時候會失效 1:發生自調用&#xff0c;類里面使用this調用本類的方法&#xff08;&#xff09;此時這個this對象不是代理類&#xff0c;而是UserService對象本身 2&#xff1a;方法不是public 3&#xff1a;數據庫不支持事務 4&#xff1a;沒有被spring管理 …

git標簽操作

一.標簽管理 1.理解標簽 標簽 tag &#xff0c;可以簡單的理解為是對某次 commit 的?個標識&#xff0c;相當于起了?個別名,當我們需要回退到某個重要版本時&#xff0c;直接使?標簽就能很快定位到 2.創建標簽 ?先&#xff0c;切換到需要打標簽的分?上,然后&#xf…

經典目標檢測網絡Yolo——原理部分

目標檢測問題 分為兩個子問題: 找到圖片中哪些位置、哪些區域含有目標對象識別這些區域中的目標對象是什么基于CNN的目標檢測算法能夠很好的解決第二個問題,在一張圖片僅含一個對象,且該對象占據了整張圖片絕大部分面積時,基于CNN的對象識別算法具有很高的準確率。 一種定…

操作系統(1)——學習導論(Ⅱ)

目錄 小程一言專欄鏈接: [link](http://t.csdnimg.cn/6grrU) 學習導論&#xff08;Ⅱ&#xff09;操作系統-賞前人佳作大型操作系統大型操作系統的一些特點和功能舉例 服務器操作系統服務器操作系統特點和功能舉例 多處理器操作系統舉例 個人計算機操作系統舉例 掌上計算機操作…

什么是ACID屬性。在MySQL中,如何使用事務?給出一個使用事務的示例,并解釋其工作原理。

解釋什么是ACID屬性 ACID是數據庫事務正確執行的四個基本要素的縮寫&#xff0c;包括原子性&#xff08;Atomicity&#xff09;、一致性&#xff08;Consistency&#xff09;、隔離性&#xff08;Isolation&#xff09;和持久性&#xff08;Durability&#xff09;。這四個屬性…

設計模式:什么是設計模式?①

一、什么是設計模式&#xff1f; 1. 是一類程序設計思想 2. 是在大量實踐過程中摸索總結出的標準經驗提煉 3. 具有多樣性和豐富性&#xff0c;不同情況應用的思想不同 二、設計模式的好處 1. 代碼生產力和效率的提升 2. 讓代碼表現更為規整&#xff0c;簡潔。閱讀維護管理的成本…

【競技寶】DOTA2-夢幻聯賽S22:AR命懸一線 XG確定晉級淘汰賽

北京時間2024年2月28日&#xff0c;DOTA2夢幻聯賽S22的比賽在昨日進入小組賽第三個比賽日&#xff0c;本次夢幻聯賽共有AR、XG、IG三支中國區的隊伍參賽&#xff0c;那么經過三日激烈的比賽之后&#xff0c;目前三支隊伍的積分情況以及晉級形勢如何呢&#xff1f; XG XG是小組…

貪心(基礎算法)--- 區間選點

905. 區間選點 思路 &#xff08;貪心&#xff09;O(nlogn) 根據右端點排序 將區間按右端點排序 遍歷區間&#xff0c;如果當前區間左端點不包含在前一個區間中&#xff0c;則選取新區間&#xff0c;所選點個數加1&#xff0c;更新當前區間右端點。如果包含&#xff0c;則跳…

常見的算法

查找算法 基本查找 package MyApi.search;public class a01BasicSearchdemo01 {public static void main(String[] args) { int[] arr{131,127,147,81,103,23,7,79}; int number82;System.out.println(BasicSearch(arr,number));}public static boolean BasicSearch(int[] ar…

Java二叉樹(1)

&#x1f435;本篇文章將對二叉樹的相關概念、性質和遍歷等知識進行講解 一、什么是樹 在講二叉樹之前&#xff0c;先了解一下什么是樹&#xff1a;樹是一種非線性結構&#xff0c;其由許多節點和子節點組成&#xff0c;整體形狀如一顆倒掛的樹&#xff0c;比如下圖&#xff1…

給nginx部署https及自簽名ssl證書

一、生成服務器root證書 openssl genrsa -out root.key 2048 openssl req -new -key root.key -out root.csr#Country Name (2 letter code) [XX]:---> CN#Country Name (2 letter code) [XX]:---> CN#State or Province Name (full name) []:---> Shanghai#Locality…

多層感知機 + 代碼實現 - 動手學深度學習v2 | 李沐動手學深度學習課程筆記

感知機 感知機≈二分類問題 感知機和其他問題的對比 訓練感知機 如果小于等于零&#xff0c;說明預測錯啦 &#xff0c;其實就是同號為正&#xff0c;異號為負 舉個分類的例子 增加樣本&#xff0c;改變分類線 繼續分類 感知機的收斂定理 XOR問題 XOR問題其實就是第1、3象限數…

【踩坑】一條指令解決torch_scatter等安裝報錯安裝不上問題

轉載請注明出處&#xff1a;小鋒學長生活大爆炸[xfxuezhang.cn] 目錄 背景說明 (推薦方法)解決方法一&#xff1a;使用conda安裝。 解決方法二&#xff1a;指定pip的網站。 解決方法三&#xff1a;直接去下載whl文件。 (終極方法)解決方法四&#xff1a;配置MSVC 特殊情況…