MySQL 之 performance_schema

背景:

自 MySQL5.5開始,MySQL新增了一個數據庫:PERFORMANCE_SCHEMA,主要用于收集數據庫服務器性能參數。此庫中表的存儲引擎均為PERFORMANCE_SCHEMA(用戶不能創建存儲引擎為PERFORMANCE_SCHEMA的表)。MySQL5.5默認是關閉此功能的,若要開啟,需手動在配置文件里添加:

[mysqld]
performance_schema=ON

查看是否開啟:

mysql>show variables like 'performance_schema';
+--------------------+-------+
| Variable_name      | Value |
+--------------------+-------+
| performance_schema | ON    |
+--------------------+-------+

從MySQL5.6開始,默認打開此功能,本文就以MySQL5.6來說明,在數據庫使用當中PERFORMANCE_SCHEMA的一些比較常用的功能。具體的信息可以查看官方文檔。

相關表信息:

一:配置類(setup)表:

mysql>show tables like '%setup%';
+----------------------------------------+
| Tables_in_performance_schema (%setup%) |
+----------------------------------------+
| setup_actors                           |
| setup_consumers                        |
| setup_instruments                      |
| setup_objects                          |
| setup_timers                           |
+----------------------------------------+

1,setup_actors:配置用戶緯度的監控,默認監控所有用戶。

mysql>select * from setup_actors;
+------+------+------+
| HOST | USER | ROLE |
+------+------+------+
| %    | %    | %    |
+------+------+------+

2,setup_consumers:配置events的消費者類型,即收集的events寫入到哪些統計表中。

mysql>select * from setup_consumers;
+--------------------------------+---------+
| NAME                           | ENABLED |
+--------------------------------+---------+
| events_stages_current          | NO      |
| events_stages_history          | NO      |
| events_stages_history_long     | NO      |
| events_statements_current      | YES     |
| events_statements_history      | NO      |
| events_statements_history_long | NO      |
| events_waits_current           | NO      |
| events_waits_history           | NO      |
| events_waits_history_long      | NO      |
| global_instrumentation         | YES     |
| thread_instrumentation         | YES     |
| statements_digest              | YES     |
+--------------------------------+---------+

這里需要說明的是需要查看哪個就更新其ENABLED列為YES。如:

mysql>update setup_consumers set ENABLED='YES' where NAME in ('events_stages_current','events_waits_current');
Query OK, 2 rows affected (0.00 sec)

更新完后立即生效,但是服務器重啟之后又會變回默認值,要永久生效需要在配置文件里添加:

[mysqld]
#performance_schema
performance_schema_consumer_events_waits_current=on
performance_schema_consumer_events_stages_current=on
performance_schema_consumer_events_statements_current=on
performance_schema_consumer_events_waits_history=on
performance_schema_consumer_events_stages_history=on
performance_schema_consumer_events_statements_history=on

即在這些表的前面加上:performance_schema_consumer_xxx。表setup_consumers里面的值有個層級關系:

global_instrumentation > thread_instrumentation = statements_digest > events_stages_current = events_statements_current = events_waits_current > events_stages_history = events_statements_history = events_waits_history > events_stages_history_long = events_statements_history_long = events_waits_history_long

只有上一層次的為YES,才會繼續檢查該本層為YES or NO。global_instrumentation是最高級別consumer,如果它設置為NO,則所有的consumer都會忽略。其中history和history_long存的是current表的歷史記錄條數,history表記錄了每個線程最近等待的10個事件,而history_long表則記錄了最近所有線程產生的10000個事件,這里的10和10000都是可以配置的。這三個表表結構相同,history和history_long表數據都來源于current表。長度通過控制參數:

mysal>show variables like 'performance_schema%history%size';
+--------------------------------------------------------+-------+
| Variable_name                                          | Value |
+--------------------------------------------------------+-------+
| performance_schema_events_stages_history_long_size     | 10000 |
| performance_schema_events_stages_history_size          | 10    |
| performance_schema_events_statements_history_long_size | 10000 |
| performance_schema_events_statements_history_size      | 10    |
| performance_schema_events_waits_history_long_size      | 10000 |
| performance_schema_events_waits_history_size           | 10    |
+--------------------------------------------------------+-------+

3,setup_instruments:配置具體的instrument,主要包含4大類:idle、stage/xxx、statement/xxx、wait/xxx:

mysql>select name,count(*) from setup_instruments group by LEFT(name,5);
+---------------------------------+----------+
| name                            | count(*) |
+---------------------------------+----------+
| idle                            |        1 |
| stage/sql/After create          |      111 |
| statement/sql/select            |      179 |
| wait/synch/mutex/sql/PAGE::lock |      296 |
+---------------------------------+----------+

idle表示socket空閑的時間,stage類表示語句的每個執行階段的統計,statement類統計語句維度的信息,wait類統計各種等待事件,比如IO,mutux,spin_lock,condition等。

4,setup_objects:配置監控對象,默認對mysql,performance_schema和information_schema中的表都不監控,而其它DB的所有表都監控。

mysql>select * from setup_objects;
+-------------+--------------------+-------------+---------+-------+
| OBJECT_TYPE | OBJECT_SCHEMA      | OBJECT_NAME | ENABLED | TIMED |
+-------------+--------------------+-------------+---------+-------+
| TABLE       | mysql              | %           | NO      | NO    |
| TABLE       | performance_schema | %           | NO      | NO    |
| TABLE       | information_schema | %           | NO      | NO    |
| TABLE       | %                  | %           | YES     | YES   |
+-------------+--------------------+-------------+---------+-------+

5,setup_timers:配置每種類型指令的統計時間單位。MICROSECOND表示統計單位是微妙,CYCLE表示統計單位是時鐘周期,時間度量與CPU的主頻有關,NANOSECOND表示統計單位是納秒。但無論采用哪種度量單位,最終統計表中統計的時間都會裝換到皮秒。(1秒=1000000000000皮秒)

mysql>select * from setup_timers;
+-----------+-------------+
| NAME      | TIMER_NAME  |
+-----------+-------------+
| idle      | MICROSECOND |
| wait      | CYCLE       |
| stage     | NANOSECOND  |
| statement | NANOSECOND  |
+-----------+-------------+

二:instance表

mysql> show tables like '%instance%';
+-------------------------------------------+
| Tables_in_performance_schema (%instance%) |
+-------------------------------------------+
| cond_instances                            |
| events_waits_summary_by_instance          |
| file_instances                            |
| file_summary_by_instance                  |
| mutex_instances                           |
| rwlock_instances                          |
+-------------------------------------------+

1,cond_instances:條件等待對象實例

表中記錄了系統中使用的條件變量的對象,OBJECT_INSTANCE_BEGIN為對象的內存地址。

2,file_instances:文件實例

表中記錄了系統中打開了文件的對象,包括ibdata文件,redo文件,binlog文件,用戶的表文件等,open_count顯示當前文件打開的數目,如果重來沒有打開過,不會出現在表中。

mysql>select * from file_instances limit 2,5;
+---------------------------------+--------------------------------------+------------+
| FILE_NAME                       | EVENT_NAME                           | OPEN_COUNT |
+---------------------------------+--------------------------------------+------------+
| /var/lib/mysql/mysql/plugin.frm | wait/io/file/sql/FRM                 |          0 |
| /var/lib/mysql/mysql/plugin.MYI | wait/io/file/myisam/kfile            |          1 |
| /var/lib/mysql/mysql/plugin.MYD | wait/io/file/myisam/dfile            |          1 |
| /var/lib/mysql/ibdata1          | wait/io/file/innodb/innodb_data_file |          2 |
| /var/lib/mysql/ib_logfile0      | wait/io/file/innodb/innodb_log_file  |          2 |
+---------------------------------+--------------------------------------+------------+

3,mutex_instances:互斥同步對象實例

表中記錄了系統中使用互斥量對象的所有記錄,其中name為:wait/synch/mutex/*。LOCKED_BY_THREAD_ID顯示哪個線程正持有mutex,若沒有線程持有,則為NULL。

4,rwlock_instances:?讀寫鎖同步對象實例

表中記錄了系統中使用讀寫鎖對象的所有記錄,其中name為 wait/synch/rwlock/*。WRITE_LOCKED_BY_THREAD_ID為正在持有該對象的thread_id,若沒有線程持有,則為NULL。READ_LOCKED_BY_COUNT為記錄了同時有多少個讀者持有讀鎖。(通過 events_waits_current 表可以知道,哪個線程在等待鎖;通過rwlock_instances知道哪個線程持有鎖。rwlock_instances的缺陷是,只能記錄持有寫鎖的線程,對于讀鎖則無能為力)。

5,socket_instances:活躍會話對象實例

表中記錄了thread_id,socket_id,ip和port,其它表可以通過thread_id與socket_instance進行關聯,獲取IP-PORT信息,能夠與應用對接起來。event_name主要包含3類:
wait/io/socket/sql/server_unix_socket,服務端unix監聽socket
wait/io/socket/sql/server_tcpip_socket,服務端tcp監聽socket
wait/io/socket/sql/client_connection,客戶端socket

三:Wait表

mysql> show tables like '%wait%';
+----------------------------------------------+
| Tables_in_performance_schema (%wait%)        |
+----------------------------------------------+
| events_waits_current                         |
| events_waits_history                         |
| events_waits_history_long                    |
| events_waits_summary_by_instance             |
| events_waits_summary_by_thread_by_event_name |
| events_waits_summary_global_by_event_name    |
+----------------------------------------------+

1,events_waits_current:記錄了當前線程等待的事件

2,events_waits_history:記錄了每個線程最近等待的10個事件

3,events_waits_history_long:記錄了最近所有線程產生的10000個事件

表結構定義如下:

CREATE TABLE `events_waits_current` (`THREAD_ID` bigint(20) unsigned NOT NULL COMMENT '線程ID',`EVENT_ID` bigint(20) unsigned NOT NULL COMMENT '當前線程的事件ID,和THREAD_ID確定唯一',`END_EVENT_ID` bigint(20) unsigned DEFAULT NULL COMMENT '當事件開始時,這一列被設置為NULL。當事件結束時,再更新為當前的事件ID',`EVENT_NAME` varchar(128) NOT NULL COMMENT '事件名稱',`SOURCE` varchar(64) DEFAULT NULL COMMENT '該事件產生時的源碼文件',`TIMER_START` bigint(20) unsigned DEFAULT NULL COMMENT '事件開始時間(皮秒)',`TIMER_END` bigint(20) unsigned DEFAULT NULL COMMENT '事件結束結束時間(皮秒)',`TIMER_WAIT` bigint(20) unsigned DEFAULT NULL COMMENT '事件等待時間(皮秒)',`SPINS` int(10) unsigned DEFAULT NULL COMMENT '',`OBJECT_SCHEMA` varchar(64) DEFAULT NULL COMMENT '庫名',`OBJECT_NAME` varchar(512) DEFAULT NULL COMMENT '文件名、表名、IP:SOCK值',`OBJECT_TYPE` varchar(64) DEFAULT NULL COMMENT 'FILE、TABLE、TEMPORARY TABLE',`INDEX_NAME` varchar(64) DEFAULT NULL COMMENT '索引名',`OBJECT_INSTANCE_BEGIN` bigint(20) unsigned NOT NULL COMMENT '內存地址',`NESTING_EVENT_ID` bigint(20) unsigned DEFAULT NULL COMMENT '該事件對應的父事件ID',`NESTING_EVENT_TYPE` enum('STATEMENT','STAGE','WAIT') DEFAULT NULL COMMENT '父事件類型(STATEMENT, STAGE, WAIT)',`OPERATION` varchar(32) NOT NULL COMMENT '操作類型(lock, read, write)',`NUMBER_OF_BYTES` bigint(20) DEFAULT NULL COMMENT '',`FLAGS` int(10) unsigned DEFAULT NULL COMMENT '標記'
) ENGINE=PERFORMANCE_SCHEMA DEFAULT CHARSET=utf8

四:Stage 表?

1,events_stages_current:記錄了當前線程所處的執行階段

2,events_stages_history:記錄了當前線程所處的執行階段10條歷史記錄

3,events_stages_history_long:記錄了當前線程所處的執行階段10000條歷史記錄

表結構定義如下:

CREATE TABLE `events_stages_current` (`THREAD_ID` bigint(20) unsigned NOT NULL COMMENT '線程ID',`EVENT_ID` bigint(20) unsigned NOT NULL COMMENT '事件ID',`END_EVENT_ID` bigint(20) unsigned DEFAULT NULL COMMENT '結束事件ID',`EVENT_NAME` varchar(128) NOT NULL COMMENT '事件名稱',`SOURCE` varchar(64) DEFAULT NULL COMMENT '源碼位置',`TIMER_START` bigint(20) unsigned DEFAULT NULL COMMENT '事件開始時間(皮秒)',`TIMER_END` bigint(20) unsigned DEFAULT NULL COMMENT '事件結束結束時間(皮秒)',`TIMER_WAIT` bigint(20) unsigned DEFAULT NULL COMMENT '事件等待時間(皮秒)',`NESTING_EVENT_ID` bigint(20) unsigned DEFAULT NULL COMMENT '該事件對應的父事件ID',`NESTING_EVENT_TYPE` enum('STATEMENT','STAGE','WAIT') DEFAULT NULL COMMENT '父事件類型(STATEMENT, STAGE, WAIT)'
) ENGINE=PERFORMANCE_SCHEMA DEFAULT CHARSET=utf8

五:Statement 表

1,events_statements_current

通過 thread_id+event_id可以唯一確定一條記錄。Statments表只記錄最頂層的請求,SQL語句或是COMMAND,每條語句一行。event_name形式為statement/sql/*,或statement/com/*

2,events_statements_history

3,events_statements_history_long

表結構定義如下:

CREATE TABLE `events_statements_current` (`THREAD_ID` bigint(20) unsigned NOT NULL COMMENT '線程ID',`EVENT_ID` bigint(20) unsigned NOT NULL COMMENT '事件ID',`END_EVENT_ID` bigint(20) unsigned DEFAULT NULL COMMENT '結束事件ID',`EVENT_NAME` varchar(128) NOT NULL COMMENT '事件名稱',`SOURCE` varchar(64) DEFAULT NULL COMMENT '源碼位置',`TIMER_START` bigint(20) unsigned DEFAULT NULL COMMENT '事件開始時間(皮秒)',`TIMER_END` bigint(20) unsigned DEFAULT NULL COMMENT '事件結束結束時間(皮秒)',`TIMER_WAIT` bigint(20) unsigned DEFAULT NULL COMMENT '事件等待時間(皮秒)',`LOCK_TIME` bigint(20) unsigned NOT NULL COMMENT '鎖時間',`SQL_TEXT` longtext COMMENT '記錄SQL語句',`DIGEST` varchar(32) DEFAULT NULL COMMENT '對SQL_TEXT做MD5產生的32位字符串',`DIGEST_TEXT` longtext COMMENT '將語句中值部分用問號代替,用于SQL語句歸類',`CURRENT_SCHEMA` varchar(64) DEFAULT NULL COMMENT '默認的數據庫名',`OBJECT_TYPE` varchar(64) DEFAULT NULL COMMENT '保留字段',`OBJECT_SCHEMA` varchar(64) DEFAULT NULL COMMENT '保留字段',`OBJECT_NAME` varchar(64) DEFAULT NULL COMMENT '保留字段',`OBJECT_INSTANCE_BEGIN` bigint(20) unsigned DEFAULT NULL COMMENT '內存地址',`MYSQL_ERRNO` int(11) DEFAULT NULL COMMENT '',`RETURNED_SQLSTATE` varchar(5) DEFAULT NULL COMMENT '',`MESSAGE_TEXT` varchar(128) DEFAULT NULL COMMENT '信息',`ERRORS` bigint(20) unsigned NOT NULL COMMENT '錯誤數目',`WARNINGS` bigint(20) unsigned NOT NULL COMMENT '警告數目',`ROWS_AFFECTED` bigint(20) unsigned NOT NULL COMMENT '影響的數目',`ROWS_SENT` bigint(20) unsigned NOT NULL COMMENT '返回的記錄數',`ROWS_EXAMINED` bigint(20) unsigned NOT NULL COMMENT '讀取掃描的記錄數目',`CREATED_TMP_DISK_TABLES` bigint(20) unsigned NOT NULL COMMENT '創建磁盤臨時表數目',`CREATED_TMP_TABLES` bigint(20) unsigned NOT NULL COMMENT '創建臨時表數目',`SELECT_FULL_JOIN` bigint(20) unsigned NOT NULL COMMENT 'join時,第一個表為全表掃描的數目',`SELECT_FULL_RANGE_JOIN` bigint(20) unsigned NOT NULL COMMENT '引用表采用range方式掃描的數目',`SELECT_RANGE` bigint(20) unsigned NOT NULL COMMENT 'join時,第一個表采用range方式掃描的數目',`SELECT_RANGE_CHECK` bigint(20) unsigned NOT NULL COMMENT '',`SELECT_SCAN` bigint(20) unsigned NOT NULL COMMENT 'join時,第一個表位全表掃描的數目',`SORT_MERGE_PASSES` bigint(20) unsigned NOT NULL COMMENT '',`SORT_RANGE` bigint(20) unsigned NOT NULL COMMENT '范圍排序數目',`SORT_ROWS` bigint(20) unsigned NOT NULL COMMENT '排序的記錄數目',`SORT_SCAN` bigint(20) unsigned NOT NULL COMMENT '全表排序數目',`NO_INDEX_USED` bigint(20) unsigned NOT NULL COMMENT '沒有使用索引數目',`NO_GOOD_INDEX_USED` bigint(20) unsigned NOT NULL COMMENT '',`NESTING_EVENT_ID` bigint(20) unsigned DEFAULT NULL COMMENT '該事件對應的父事件ID',`NESTING_EVENT_TYPE` enum('STATEMENT','STAGE','WAIT') DEFAULT NULL COMMENT '父事件類型(STATEMENT, STAGE, WAIT)'
) ENGINE=PERFORMANCE_SCHEMA DEFAULT CHARSET=utf8

六:Connection 表

1,users:記錄用戶連接數信息

mysql>select * from users;
+------------------+---------------------+-------------------+
| USER             | CURRENT_CONNECTIONS | TOTAL_CONNECTIONS |
+------------------+---------------------+-------------------+
| debian-sys-maint |                   0 |                36 |
| zjy              |                   1 |             22285 |
| dchat_php        |                   0 |             37864 |
| dxyslave         |                   2 |                 9 |
| nagios           |                   0 |             10770 |
| dchat_data       |                 140 |           2233023 |
| NULL             |                   0 |             15866 |
| dchat_api        |                 160 |           2754212 |
| mha_data         |                   1 |                36 |
| backup           |                   0 |                15 |
| cacti            |                   0 |              4312 |
| kol              |                  10 |            172414 |
+------------------+---------------------+-------------------+

2,hosts:記錄了主機連接數信息

mysql>select * from users;
+------------------+---------------------+-------------------+
| USER             | CURRENT_CONNECTIONS | TOTAL_CONNECTIONS |
+------------------+---------------------+-------------------+
| debian-sys-maint |                   0 |                36 |
| zjy              |                   1 |             22285 |
| dchat_php        |                   0 |             37864 |
| dxyslave         |                   2 |                 9 |
| nagios           |                   0 |             10770 |
| dchat_data       |                 140 |           2233023 |
| NULL             |                   0 |             15866 |
| dchat_api        |                 160 |           2754212 |
| mha_data         |                   1 |                36 |
| backup           |                   0 |                15 |
| cacti            |                   0 |              4312 |
| kol              |                  10 |            172414 |
+------------------+---------------------+-------------------+

3,accounts:記錄了用戶主機連接數信息

mysql>select * from accounts;
+------------------+-----------------+---------------------+-------------------+
| USER             | HOST            | CURRENT_CONNECTIONS | TOTAL_CONNECTIONS |
+------------------+-----------------+---------------------+-------------------+
| cacti            | 192.168.100.251 |                   0 |              4313 |
| debian-sys-maint | localhost       |                   0 |                36 |
| backup           | 192.168.100.193 |                   0 |                15 |
| dchat_api        | 192.168.100.220 |                  80 |           1382585 |
| dchat_php        | 192.168.100.220 |                   0 |             20292 |
| zjy              | 192.168.100.139 |                   0 |               698 |
| zjy              | 192.168.100.241 |                   0 |             21558 |
| mha_data         | 192.168.100.191 |                   1 |                34 |
| dxyslave         | 192.168.100.118 |                   1 |                 2 |
| kol              | 192.168.100.240 |                  10 |            172431 |
| dxyslave         | 192.168.100.25  |                   1 |                 7 |
| dchat_data       | 192.168.100.218 |                  70 |           1109974 |
| zjy              | 192.168.100.23  |                   1 |                31 |
| dchat_php        | 192.168.100.218 |                   0 |             17572 |
| dchat_data       | 192.168.100.220 |                  70 |           1123306 |
| NULL             | NULL            |                   0 |             15868 |
| mha_data         | 192.168.100.21  |                   0 |                 2 |
| dchat_api        | 192.168.100.218 |                  80 |           1371918 |
| nagios           | localhost       |                   0 |             10771 |
+------------------+-----------------+---------------------+-------------------+

七:Summary 表

Summary表聚集了各個維度的統計信息包括表維度,索引維度,會話維度,語句維度和鎖維度的統計信息

1,events_waits_summary_global_by_event_name:按等待事件類型聚合,每個事件一條記錄

CREATE TABLE `events_waits_summary_global_by_event_name` (`EVENT_NAME` varchar(128) NOT NULL COMMENT '事件名稱',`COUNT_STAR` bigint(20) unsigned NOT NULL COMMENT '事件計數',`SUM_TIMER_WAIT` bigint(20) unsigned NOT NULL COMMENT '總的等待時間',`MIN_TIMER_WAIT` bigint(20) unsigned NOT NULL COMMENT '最小等待時間',`AVG_TIMER_WAIT` bigint(20) unsigned NOT NULL COMMENT '平均等待時間',`MAX_TIMER_WAIT` bigint(20) unsigned NOT NULL COMMENT '最大等待時間'
) ENGINE=PERFORMANCE_SCHEMA DEFAULT CHARSET=utf8

2,events_waits_summary_by_instance:按等待事件對象聚合,同一種等待事件,可能有多個實例,每個實例有不同的內存地址,因此event_name+object_instance_begin唯一確定一條記錄。

CREATE TABLE `events_waits_summary_by_instance` (`EVENT_NAME` varchar(128) NOT NULL COMMENT '事件名稱',`OBJECT_INSTANCE_BEGIN` bigint(20) unsigned NOT NULL COMMENT '內存地址',`COUNT_STAR` bigint(20) unsigned NOT NULL COMMENT '事件計數',`SUM_TIMER_WAIT` bigint(20) unsigned NOT NULL COMMENT '總的等待時間',`MIN_TIMER_WAIT` bigint(20) unsigned NOT NULL COMMENT '最小等待時間',`AVG_TIMER_WAIT` bigint(20) unsigned NOT NULL COMMENT '平均等待時間',`MAX_TIMER_WAIT` bigint(20) unsigned NOT NULL COMMENT '最大等待時間'
) ENGINE=PERFORMANCE_SCHEMA DEFAULT CHARSET=utf8

3,events_waits_summary_by_thread_by_event_name:按每個線程和事件來統計,thread_id+event_name唯一確定一條記錄。

CREATE TABLE `events_waits_summary_by_thread_by_event_name` (`THREAD_ID` bigint(20) unsigned NOT NULL COMMENT '線程ID',`EVENT_NAME` varchar(128) NOT NULL COMMENT '事件名稱',`COUNT_STAR` bigint(20) unsigned NOT NULL COMMENT '事件計數',`SUM_TIMER_WAIT` bigint(20) unsigned NOT NULL COMMENT '總的等待時間',`MIN_TIMER_WAIT` bigint(20) unsigned NOT NULL COMMENT '最小等待時間',`AVG_TIMER_WAIT` bigint(20) unsigned NOT NULL COMMENT '平均等待時間',`MAX_TIMER_WAIT` bigint(20) unsigned NOT NULL COMMENT '最大等待時間'
) ENGINE=PERFORMANCE_SCHEMA DEFAULT CHARSET=utf8

4,events_stages_summary_global_by_event_name:按事件階段類型聚合,每個事件一條記錄,表結構同上。

5,events_stages_summary_by_thread_by_event_name:按每個線程和事件來階段統計,表結構同上。

6,events_statements_summary_by_digest:按照事件的語句進行聚合。

CREATE TABLE `events_statements_summary_by_digest` (`SCHEMA_NAME` varchar(64) DEFAULT NULL COMMENT '庫名',`DIGEST` varchar(32) DEFAULT NULL COMMENT '對SQL_TEXT做MD5產生的32位字符串。如果為consumer表中沒有打開statement_digest選項,則為NULL',`DIGEST_TEXT` longtext COMMENT '將語句中值部分用問號代替,用于SQL語句歸類。如果為consumer表中沒有打開statement_digest選項,則為NULL。',`COUNT_STAR` bigint(20) unsigned NOT NULL COMMENT '事件計數',`SUM_TIMER_WAIT` bigint(20) unsigned NOT NULL COMMENT '總的等待時間',`MIN_TIMER_WAIT` bigint(20) unsigned NOT NULL COMMENT '最小等待時間',`AVG_TIMER_WAIT` bigint(20) unsigned NOT NULL COMMENT '平均等待時間',`MAX_TIMER_WAIT` bigint(20) unsigned NOT NULL COMMENT '最大等待時間',`SUM_LOCK_TIME` bigint(20) unsigned NOT NULL COMMENT '鎖時間總時長',`SUM_ERRORS` bigint(20) unsigned NOT NULL COMMENT '錯誤數的總',`SUM_WARNINGS` bigint(20) unsigned NOT NULL COMMENT '警告的總數',`SUM_ROWS_AFFECTED` bigint(20) unsigned NOT NULL COMMENT '影響的總數目',`SUM_ROWS_SENT` bigint(20) unsigned NOT NULL COMMENT '返回總數目',`SUM_ROWS_EXAMINED` bigint(20) unsigned NOT NULL COMMENT '總的掃描的數目',`SUM_CREATED_TMP_DISK_TABLES` bigint(20) unsigned NOT NULL COMMENT '創建磁盤臨時表的總數目',`SUM_CREATED_TMP_TABLES` bigint(20) unsigned NOT NULL COMMENT '創建臨時表的總數目',`SUM_SELECT_FULL_JOIN` bigint(20) unsigned NOT NULL COMMENT '第一個表全表掃描的總數目',`SUM_SELECT_FULL_RANGE_JOIN` bigint(20) unsigned NOT NULL COMMENT '總的采用range方式掃描的數目',`SUM_SELECT_RANGE` bigint(20) unsigned NOT NULL COMMENT '第一個表采用range方式掃描的總數目',`SUM_SELECT_RANGE_CHECK` bigint(20) unsigned NOT NULL COMMENT '',`SUM_SELECT_SCAN` bigint(20) unsigned NOT NULL COMMENT '第一個表位全表掃描的總數目',`SUM_SORT_MERGE_PASSES` bigint(20) unsigned NOT NULL COMMENT '',`SUM_SORT_RANGE` bigint(20) unsigned NOT NULL COMMENT '范圍排序總數',`SUM_SORT_ROWS` bigint(20) unsigned NOT NULL COMMENT '排序的記錄總數目',`SUM_SORT_SCAN` bigint(20) unsigned NOT NULL COMMENT '第一個表排序掃描總數目',`SUM_NO_INDEX_USED` bigint(20) unsigned NOT NULL COMMENT '沒有使用索引總數',`SUM_NO_GOOD_INDEX_USED` bigint(20) unsigned NOT NULL COMMENT '',`FIRST_SEEN` timestamp NOT NULL DEFAULT '0000-00-00 00:00:00' COMMENT '第一次執行時間',`LAST_SEEN` timestamp NOT NULL DEFAULT '0000-00-00 00:00:00' COMMENT '最后一次執行時間'
) ENGINE=PERFORMANCE_SCHEMA DEFAULT CHARSET=utf8

7,events_statements_summary_global_by_event_name:按照事件的語句進行聚合。表結構同上。

8,events_statements_summary_by_thread_by_event_name:按照線程和事件的語句進行聚合,表結構同上。

9,file_summary_by_instance:按事件類型統計(物理IO維度

10,file_summary_by_event_name:具體文件統計(物理IO維度

9和10一起說明:

統計IO操作:COUNT_STAR,SUM_TIMER_WAIT,MIN_TIMER_WAIT,AVG_TIMER_WAIT,MAX_TIMER_WAIT

統計讀 ? ? ?:COUNT_READ,SUM_TIMER_READ,MIN_TIMER_READ,AVG_TIMER_READ,MAX_TIMER_READ, SUM_NUMBER_OF_BYTES_READ

統計寫 ? ? ?:COUNT_WRITE,SUM_TIMER_WRITE,MIN_TIMER_WRITE,AVG_TIMER_WRITE,MAX_TIMER_WRITE, SUM_NUMBER_OF_BYTES_WRITE

統計其他IO事件,比如create,delete,open,close等:COUNT_MISC,SUM_TIMER_MISC,MIN_TIMER_MISC,AVG_TIMER_MISC,MAX_TIMER_MISC

11,table_io_waits_summary_by_table:根據wait/io/table/sql/handler,聚合每個表的I/O操作(邏輯IO緯度

統計IO操作:COUNT_STAR,SUM_TIMER_WAIT,MIN_TIMER_WAIT,AVG_TIMER_WAIT,MAX_TIMER_WAIT?

統計讀 ? ? ?:COUNT_READ,SUM_TIMER_READ,MIN_TIMER_READ,AVG_TIMER_READ,MAX_TIMER_READ

? ? ? ? ? ? ? :COUNT_FETCH,SUM_TIMER_FETCH,MIN_TIMER_FETCH,AVG_TIMER_FETCH, MAX_TIMER_FETCH

統計寫 ? ? ?:COUNT_WRITE,SUM_TIMER_WRITE,MIN_TIMER_WRITE,AVG_TIMER_WRITE,MAX_TIMER_WRITE

INSERT統計,相應的還有DELETE和UPDATE統計:COUNT_INSERT,SUM_TIMER_INSERT,MIN_TIMER_INSERT,AVG_TIMER_INSERT,MAX_TIMER_INSERT

12,table_io_waits_summary_by_index_usage:與table_io_waits_summary_by_table類似,按索引維度統計

13,table_lock_waits_summary_by_table:聚合了表鎖等待事件,包括internal lock 和 external lock

internal lock通過SQL層函數thr_lock調用,OPERATION值為:
read normal、read with shared locks、read high priority、read no insert、write allow write、write concurrent insert、write delayed、write low priority、write normal
external lock則通過接口函數handler::external_lock調用存儲引擎層,OPERATION列的值為:read external、write external

14,Connection Summaries表:account、user、host

events_waits_summary_by_account_by_event_name
events_waits_summary_by_user_by_event_name
events_waits_summary_by_host_by_event_name?
events_stages_summary_by_account_by_event_name
events_stages_summary_by_user_by_event_name
events_stages_summary_by_host_by_event_name?
events_statements_summary_by_account_by_event_name
events_statements_summary_by_user_by_event_name
events_statements_summary_by_host_by_event_name

15,socket_summary_by_instance、socket_summary_by_event_name:socket聚合統計表。

八:其他相關表

1,performance_timers:系統支持的統計時間單位

2,threads:監視服務端的當前運行的線程

統計應用:

? ? ? 關于SQL維度的統計信息主要集中在events_statements_summary_by_digest表中,通過將SQL語句抽象出digest,可以統計某類SQL語句在各個維度的統計信息

1,哪個SQL執行最多:

mysql>SELECT SCHEMA_NAME,DIGEST_TEXT,COUNT_STAR,SUM_ROWS_SENT,SUM_ROWS_EXAMINED,FIRST_SEEN,LAST_SEEN FROM events_statements_summary_by_digest ORDER BY COUNT_STAR desc LIMIT 1\G
*************************** 1. row ***************************SCHEMA_NAME: dchatDIGEST_TEXT: SELECT ...COUNT_STAR: 1161210102SUM_ROWS_SENT: 1161207842
SUM_ROWS_EXAMINED: 0FIRST_SEEN: 2016-02-17 00:36:46LAST_SEEN: 2016-03-07 11:36:29

各個字段的注釋可以看上面的表結構說明:從2月17號到3月7號該SQL執行了1161210102次。

2,哪個SQL平均響應時間最多:

mysql>SELECT SCHEMA_NAME,DIGEST_TEXT,COUNT_STAR,AVG_TIMER_WAIT,SUM_ROWS_SENT,SUM_ROWS_EXAMINED,FIRST_SEEN,LAST_SEEN FROM events_statements_summary_by_digest ORDER BY AVG_TIMER_WAIT desc LIMIT 1\G
*************************** 1. row ***************************SCHEMA_NAME: dchatDIGEST_TEXT: SELECT ...COUNT_STAR: 1AVG_TIMER_WAIT: 273238183964000SUM_ROWS_SENT: 50208
SUM_ROWS_EXAMINED: 5565651FIRST_SEEN: 2016-02-22 13:27:33LAST_SEEN: 2016-02-22 13:27:33

各個字段的注釋可以看上面的表結構說明:從2月17號到3月7號該SQL平均響應時間273238183964000皮秒(1000000000000皮秒=1秒)

3,哪個SQL掃描的行數最多:

SUM_ROWS_EXAMINED

4,哪個SQL使用的臨時表最多:

SUM_CREATED_TMP_DISK_TABLES、SUM_CREATED_TMP_TABLES

5,哪個SQL返回的結果集最多:

SUM_ROWS_SENT

6,哪個SQL排序數最多:

SUM_SORT_ROWS

通過上述指標我們可以間接獲得某類SQL的邏輯IO(SUM_ROWS_EXAMINED),CPU消耗(SUM_SORT_ROWS),網絡帶寬(SUM_ROWS_SENT)的對比。

通過file_summary_by_instance表,可以獲得系統運行到現在,哪個文件(表)物理IO最多,這可能意味著這個表經常需要訪問磁盤IO。

7,哪個表、文件邏輯IO最多(熱數據):

mysql>SELECT FILE_NAME,EVENT_NAME,COUNT_READ,SUM_NUMBER_OF_BYTES_READ,COUNT_WRITE,SUM_NUMBER_OF_BYTES_WRITE FROM file_summary_by_instance ORDER BY SUM_NUMBER_OF_BYTES_READ+SUM_NUMBER_OF_BYTES_WRITE DESC LIMIT 2\G
*************************** 1. row ***************************FILE_NAME: /var/lib/mysql/ibdata1  #文件EVENT_NAME: wait/io/file/innodb/innodb_data_fileCOUNT_READ: 544SUM_NUMBER_OF_BYTES_READ: 10977280COUNT_WRITE: 3700729
SUM_NUMBER_OF_BYTES_WRITE: 1433734217728
*************************** 2. row ***************************FILE_NAME: /var/lib/mysql/dchat/fans.ibd   #表EVENT_NAME: wait/io/file/innodb/innodb_data_fileCOUNT_READ: 9370680SUM_NUMBER_OF_BYTES_READ: 153529188352COUNT_WRITE: 67576376
SUM_NUMBER_OF_BYTES_WRITE: 1107815432192

8,哪個索引使用最多:

mysql>SELECT OBJECT_NAME, INDEX_NAME, COUNT_FETCH, COUNT_INSERT, COUNT_UPDATE, COUNT_DELETE FROM table_io_waits_summary_by_index_usage ORDER BY SUM_TIMER_WAIT DESC limit 1;
+-------------+------------+-------------+--------------+--------------+--------------+
| OBJECT_NAME | INDEX_NAME | COUNT_FETCH | COUNT_INSERT | COUNT_UPDATE | COUNT_DELETE |
+-------------+------------+-------------+--------------+--------------+--------------+
| fans        | PRIMARY    | 29002695158 |            0 |    296373434 |            0 |
+-------------+------------+-------------+--------------+--------------+--------------+
1 row in set (0.29 sec)

通過table_io_waits_summary_by_index_usage表,可以獲得系統運行到現在,哪個表的具體哪個索引(包括主鍵索引,二級索引)使用最多。

9,哪個索引沒有使用過:

mysql>SELECT OBJECT_SCHEMA, OBJECT_NAME, INDEX_NAME FROM table_io_waits_summary_by_index_usage WHERE INDEX_NAME IS NOT NULL AND COUNT_STAR = 0 AND OBJECT_SCHEMA <> 'mysql' ORDER BY OBJECT_SCHEMA,OBJECT_NAME;

10,哪個等待事件消耗的時間最多:

mysql>SELECT EVENT_NAME, COUNT_STAR, SUM_TIMER_WAIT, AVG_TIMER_WAIT FROM events_waits_summary_global_by_event_name WHERE event_name != 'idle' ORDER BY SUM_TIMER_WAIT DESC LIMIT 1;

11,類似profiling功能:

分析具體某條SQL,該SQL在執行各個階段的時間消耗,通過events_statements_xxx表和events_stages_xxx表,就可以達到目的。兩個表通過event_id與nesting_event_id關聯,stages表的nesting_event_id為對應statements表的event_id;針對每個stage可能出現的鎖等待,一個stage會對應一個或多個wait,通過stage_xxx表的event_id字段與waits_xxx表的nesting_event_id進行關聯。如:

比如分析包含count(*)的某條SQL語句,具體如下:SELECT
EVENT_ID,
sql_text
FROM events_statements_history
WHERE sql_text LIKE '%count(*)%';
+----------+--------------------------------------+
| EVENT_ID | sql_text |
+----------+--------------------------------------+
| 1690 | select count(*) from chuck.test_slow |
+----------+--------------------------------------+
首先得到了語句的event_id為1690,通過查找events_stages_xxx中nesting_event_id為1690的記錄,可以達到目的。a.查看每個階段的時間消耗:
SELECT
event_id,
EVENT_NAME,
SOURCE,
TIMER_END - TIMER_START
FROM events_stages_history_long
WHERE NESTING_EVENT_ID = 1690;
+----------+--------------------------------+----------------------+-----------------------+
| event_id | EVENT_NAME | SOURCE | TIMER_END-TIMER_START |
+----------+--------------------------------+----------------------+-----------------------+
| 1691 | stage/sql/init | mysqld.cc:990 | 316945000 |
| 1693 | stage/sql/checking permissions | sql_parse.cc:5776 | 26774000 |
| 1695 | stage/sql/Opening tables | sql_base.cc:4970 | 41436934000 |
| 2638 | stage/sql/init | sql_select.cc:1050 | 85757000 |
| 2639 | stage/sql/System lock | lock.cc:303 | 40017000 |
| 2643 | stage/sql/optimizing | sql_optimizer.cc:138 | 38562000 |
| 2644 | stage/sql/statistics | sql_optimizer.cc:362 | 52845000 |
| 2645 | stage/sql/preparing | sql_optimizer.cc:485 | 53196000 |
| 2646 | stage/sql/executing | sql_executor.cc:112 | 3153000 |
| 2647 | stage/sql/Sending data | sql_executor.cc:192 | 7369072089000 |
| 4304138 | stage/sql/end | sql_select.cc:1105 | 19920000 |
| 4304139 | stage/sql/query end | sql_parse.cc:5463 | 44721000 |
| 4304145 | stage/sql/closing tables | sql_parse.cc:5524 | 61723000 |
| 4304152 | stage/sql/freeing items | sql_parse.cc:6838 | 455678000 |
| 4304155 | stage/sql/logging slow query | sql_parse.cc:2258 | 83348000 |
| 4304159 | stage/sql/cleaning up | sql_parse.cc:2163 | 4433000 |
+----------+--------------------------------+----------------------+-----------------------+
通過間接關聯,我們能分析得到SQL語句在每個階段的時間消耗,時間單位以皮秒表示。這里展示的結果很類似profiling功能,有了performance schema,就不再需要profiling這個功能了。另外需要注意的是,由于默認情況下events_stages_history表中只為每個連接記錄了最近10條記錄,為了確保獲取所有記錄,需要訪問events_stages_history_long表b.查看某個階段的鎖等待情況
針對每個stage可能出現的鎖等待,一個stage會對應一個或多個wait,events_waits_history_long這個表容易爆滿[默認閥值10000]。由于select count(*)需要IO(邏輯IO或者物理IO),所以在stage/sql/Sending data階段會有io等待的統計。通過stage_xxx表的event_id字段與waits_xxx表的nesting_event_id進行關聯。
SELECT
event_id,
event_name,
source,
timer_wait,
object_name,
index_name,
operation,
nesting_event_id
FROM events_waits_history_long
WHERE nesting_event_id = 2647;
+----------+---------------------------+-----------------+------------+-------------+------------+-----------+------------------+
| event_id | event_name | source | timer_wait | object_name | index_name | operation | nesting_event_id |
+----------+---------------------------+-----------------+------------+-------------+------------+-----------+------------------+
| 190607 | wait/io/table/sql/handler | handler.cc:2842 | 1845888 | test_slow | idx_c1 | fetch | 2647 |
| 190608 | wait/io/table/sql/handler | handler.cc:2842 | 1955328 | test_slow | idx_c1 | fetch | 2647 |
| 190609 | wait/io/table/sql/handler | handler.cc:2842 | 1929792 | test_slow | idx_c1 | fetch | 2647 | 
| 190610 | wait/io/table/sql/handler | handler.cc:2842 | 1869600 | test_slow | idx_c1 | fetch | 2647 |
| 190611 | wait/io/table/sql/handler | handler.cc:2842 | 1922496 | test_slow | idx_c1 | fetch | 2647 |
+----------+---------------------------+-----------------+------------+-------------+------------+-----------+------------------+
通過上面的實驗,我們知道了statement,stage,wait的三級結構,通過nesting_event_id進行關聯,它表示某個事件的父event_id。(2).模擬innodb行鎖等待的例子
會話A執行語句update test_icp set y=y+1 where x=1(x為primary key),不commit;會話B執行同樣的語句update test_icp set y=y+1 where x=1,會話B堵塞,并最終報錯。通過連接連接查詢events_statements_history_long和events_stages_history_long,可以看到在updating階段花了大約60s的時間。這主要因為實例上的innodb_lock_wait_timeout設置為60,等待60s后超時報錯了。SELECT
statement.EVENT_ID,
stages.event_id,
statement.sql_text,
stages.event_name,
stages.timer_wait
FROM events_statements_history_long statement 
join events_stages_history_long stages 
on statement.event_id=stages.nesting_event_id 
WHERE statement.sql_text = 'update test_icp set y=y+1 where x=1';
+----------+----------+-------------------------------------+--------------------------------+----------------+
| EVENT_ID | event_id | sql_text | event_name | timer_wait |
+----------+----------+-------------------------------------+--------------------------------+----------------+
| 5816 | 5817 | update test_icp set y=y+1 where x=1 | stage/sql/init | 195543000 |
| 5816 | 5819 | update test_icp set y=y+1 where x=1 | stage/sql/checking permissions | 22730000 |
| 5816 | 5821 | update test_icp set y=y+1 where x=1 | stage/sql/Opening tables | 66079000 |
| 5816 | 5827 | update test_icp set y=y+1 where x=1 | stage/sql/init | 89116000 |
| 5816 | 5828 | update test_icp set y=y+1 where x=1 | stage/sql/System lock | 218744000 |
| 5816 | 5832 | update test_icp set y=y+1 where x=1 | stage/sql/updating | 6001362045000 |
| 5816 | 5968 | update test_icp set y=y+1 where x=1 | stage/sql/end | 10435000 |
| 5816 | 5969 | update test_icp set y=y+1 where x=1 | stage/sql/query end | 85979000 |
| 5816 | 5983 | update test_icp set y=y+1 where x=1 | stage/sql/closing tables | 56562000 |
| 5816 | 5990 | update test_icp set y=y+1 where x=1 | stage/sql/freeing items | 83563000 |
| 5816 | 5992 | update test_icp set y=y+1 where x=1 | stage/sql/cleaning up | 4589000 |
+----------+----------+-------------------------------------+--------------------------------+----------------+
查看wait事件:
SELECT
event_id,
event_name,
source,
timer_wait,
object_name,
index_name,
operation,
nesting_event_id
FROM events_waits_history_long
WHERE nesting_event_id = 5832;
*************************** 1. row ***************************
event_id: 5832
event_name: wait/io/table/sql/handler
source: handler.cc:2782
timer_wait: 6005946156624
object_name: test_icp
index_name: PRIMARY
operation: fetch
從結果來看,waits表中記錄了一個fetch等待事件,但并沒有更細的innodb行鎖等待事件統計。(3).模擬MDL鎖等待的例子
會話A執行一個大查詢select count(*) from test_slow,會話B執行表結構變更alter table test_slow modify c2 varchar(152);通過如下語句可以得到alter語句的執行過程,重點關注“stage/sql/Waiting for table metadata lock”階段。SELECT
statement.EVENT_ID,
stages.event_id,
statement.sql_text,
stages.event_name as stage_name,
stages.timer_wait as stage_time
FROM events_statements_history_long statement 
left join events_stages_history_long stages 
on statement.event_id=stages.nesting_event_id
WHERE statement.sql_text = 'alter table test_slow modify c2 varchar(152)';
+-----------+-----------+----------------------------------------------+----------------------------------------------------+---------------+
| EVENT_ID | event_id | sql_text | stage_name | stage_time |
+-----------+-----------+----------------------------------------------+----------------------------------------------------+---------------+
| 326526744 | 326526745 | alter table test_slow modify c2 varchar(152) | stage/sql/init | 216662000 |
| 326526744 | 326526747 | alter table test_slow modify c2 varchar(152) | stage/sql/checking permissions | 18183000 |
| 326526744 | 326526748 | alter table test_slow modify c2 varchar(152) | stage/sql/checking permissions | 10294000 |
| 326526744 | 326526750 | alter table test_slow modify c2 varchar(152) | stage/sql/init | 4783000 |
| 326526744 | 326526751 | alter table test_slow modify c2 varchar(152) | stage/sql/Opening tables | 140172000 |
| 326526744 | 326526760 | alter table test_slow modify c2 varchar(152) | stage/sql/setup | 157643000 |
| 326526744 | 326526769 | alter table test_slow modify c2 varchar(152) | stage/sql/creating table | 8723217000 |
| 326526744 | 326526803 | alter table test_slow modify c2 varchar(152) | stage/sql/After create | 257332000 |
| 326526744 | 326526832 | alter table test_slow modify c2 varchar(152) | stage/sql/Waiting for table metadata lock | 1000181831000 |
| 326526744 | 326526835 | alter table test_slow modify c2 varchar(152) | stage/sql/After create | 33483000 |
| 326526744 | 326526838 | alter table test_slow modify c2 varchar(152) | stage/sql/Waiting for table metadata lock | 1000091810000 |
| 326526744 | 326526841 | alter table test_slow modify c2 varchar(152) | stage/sql/After create | 17187000 |
| 326526744 | 326526844 | alter table test_slow modify c2 varchar(152) | stage/sql/Waiting for table metadata lock | 1000126464000 |
| 326526744 | 326526847 | alter table test_slow modify c2 varchar(152) | stage/sql/After create | 27472000 |
| 326526744 | 326526850 | alter table test_slow modify c2 varchar(152) | stage/sql/Waiting for table metadata lock | 561996133000 |
| 326526744 | 326526853 | alter table test_slow modify c2 varchar(152) | stage/sql/After create | 124876000 |
| 326526744 | 326526877 | alter table test_slow modify c2 varchar(152) | stage/sql/System lock | 30659000 |
| 326526744 | 326526881 | alter table test_slow modify c2 varchar(152) | stage/sql/preparing for alter table | 40246000 |
| 326526744 | 326526889 | alter table test_slow modify c2 varchar(152) | stage/sql/altering table | 36628000 |
| 326526744 | 326528280 | alter table test_slow modify c2 varchar(152) | stage/sql/end | 43824000 |
| 326526744 | 326528281 | alter table test_slow modify c2 varchar(152) | stage/sql/query end | 112557000 |
| 326526744 | 326528299 | alter table test_slow modify c2 varchar(152) | stage/sql/closing tables | 27707000 |
| 326526744 | 326528305 | alter table test_slow modify c2 varchar(152) | stage/sql/freeing items | 201614000 |
| 326526744 | 326528308 | alter table test_slow modify c2 varchar(152) | stage/sql/cleaning up | 3584000 |
+-----------+-----------+----------------------------------------------+----------------------------------------------------+---------------+
從結果可以看到,出現了多次stage/sql/Waiting for table metadata lock階段,并且間隔1s,說明每隔1s鐘會重試判斷。找一個該階段的event_id,通過nesting_event_id關聯,確定到底在等待哪個wait事件。
SELECT
event_id,
event_name,
source,
timer_wait,
object_name,
index_name,
operation,
nesting_event_id
FROM events_waits_history_long
WHERE nesting_event_id = 326526850;
+-----------+---------------------------------------------------+------------------+--------------+-------------+------------+------------+------------------+
| event_id | event_name | source | timer_wait | object_name | index_name | operation | nesting_event_id |
+-----------+---------------------------------------------------+------------------+--------------+-------------+------------+------------+------------------+
| 326526851 | wait/synch/cond/sql/MDL_context::COND_wait_status | mdl.cc:1327 | 562417991328 | NULL | NULL | timed_wait | 326526850 |
| 326526852 | wait/synch/mutex/mysys/my_thread_var::mutex | sql_class.h:3481 | 733248 | NULL | NULL | lock | 326526850 |
+-----------+---------------------------------------------------+------------------+--------------+-------------+------------+------------+------------------+
通過結果可以知道,產生阻塞的是條件變量MDL_context::COND_wait_status,并且顯示了代碼的位置。

總結:

本文通過對Performance Schema數據庫的介紹,主要用于收集數據庫服務器性能參數:①提供進程等待的詳細信息,包括鎖、互斥變量、文件信息;②保存歷史的事件匯總信息,為提供MySQL服務器性能做出詳細的判斷;③對于新增和刪除監控事件點都非常容易,并可以改變mysql服務器的監控周期,例如(CYCLE、MICROSECOND)。通過該庫得到數據庫運行的統計信息,更好分析定位問題和完善監控信息。類似的監控還有:

打開標準的innodb監控:
CREATE TABLE innodb_monitor (a INT) ENGINE=INNODB;
打開innodb的鎖監控:
CREATE TABLE innodb_lock_monitor (a INT) ENGINE=INNODB;
打開innodb表空間監控:
CREATE TABLE innodb_tablespace_monitor (a INT) ENGINE=INNODB;
打開innodb表監控:
CREATE TABLE innodb_table_monitor (a INT) ENGINE=INNODB;

?

本文來自互聯網用戶投稿,該文觀點僅代表作者本人,不代表本站立場。本站僅提供信息存儲空間服務,不擁有所有權,不承擔相關法律責任。
如若轉載,請注明出處:http://www.pswp.cn/news/454614.shtml
繁體地址,請注明出處:http://hk.pswp.cn/news/454614.shtml
英文地址,請注明出處:http://en.pswp.cn/news/454614.shtml

如若內容造成侵權/違法違規/事實不符,請聯系多彩編程網進行投訴反饋email:809451989@qq.com,一經查實,立即刪除!

相關文章

DNS解析原理與Bind部署DNS服務

DNS是什么&#xff1f; DNS&#xff08;Domain Name System&#xff0c;域名系統&#xff09;是互聯網上最核心的帶層級的分布式系統&#xff0c;它負責把域名轉換為IP地址、反查IP到域名的反向解析以及宣告郵件路由等信息&#xff0c;使得基于域名提供服務稱為可能&#xff0c…

qt 獲取本機的wifi密碼_還在記密碼?這款開源免費的賬號密碼管理神器趕緊收了...

工作中涉及到得賬號密碼&#xff0c;你是怎么記錄得&#xff1f;如果是文檔word或者excel記錄&#xff0c;那么回非常麻煩&#xff0c;每次還得打開。如果是瀏覽器自己記錄&#xff0c;如果更新密碼&#xff0c;又記不得。尷尬&#xff01;今天大衛給大家推薦一款開源免費得賬號…

adaptec raid linux,adaptecraid卡管理軟件在windows和linux下的安裝使用介紹(7頁)-原創力文檔...

adaptec raid卡管理軟件在 windows和linux下的安裝使用文檔l.adaptec raid卡的管理軟件在 windows下安裝后的運行界面如下圖:adaplecadaplec點擊connect后&#xff0c;便可進入管理軟件的主界面&#xff0c;如下圖:在這個主界面中可以選擇要操作的 raid卡&#xff0c;例如本例中…

think queue 消息隊列初體驗

使用的是tp5 自帶的消息隊列 thinkphp top里的 消息隊列框架 think-queue 這是thinkphp官方團隊開發的一個專門支持隊列服務的擴展包 消息隊列應用場景&#xff1a; 消息隊列適用于大并發或者返回結果 時間有點長并需要批量操作的第三方接口。 當前使用快遞單號獲取&#xf…

Linux快速計算MD5和Sha1命令

Linux計算MD5和Sha1的命令 MD5 MD5即Message-Digest Algorithm 5&#xff08;信息-摘要算法 5&#xff09;&#xff0c;用于確保信息傳輸完整一致。是計算機廣泛使用的雜湊算法之一&#xff08;又譯摘要算法、哈希算法&#xff09;&#xff0c;主流編程語言普遍已有MD5實現。 S…

win10無法運行C語言文件,主編告訴你win10打不開pdf文件的詳盡處理辦法

win10打不開pdf文件的問題大家有沒有發現呢&#xff1f;今天有一個網友就來向小編詢問處理辦法。其實不知都還有多少用戶遇到了win10打不開pdf文件的問題&#xff0c;我們可以嘗試著自己來處理win10打不開pdf文件的問題&#xff0c;我們其實只需要這樣操作&#xff1a;1、2、就…

MySQL 自帶的四個數據庫 介紹

背景 通過終端登錄mysql數據庫&#xff08;或直接用客戶端工具&#xff09;查看全部數據庫,如下&#xff1a; 5.7及以上自帶庫為&#xff1a;information_schema、mysql、performance_schema、sys&#xff1b; 5.6自帶的庫為&#xff1a;information_schema、mysql、performa…

簡單繪圖軟件實現mfc大作業_紙筆書寫|可直播可微課可寫作業可批改的手寫板,快來愛“我”吧...

線上教學進入下半場&#xff0c;我們需要什么&#xff1f;走過線上教育的探索期&#xff0c;相信不少老師已經對線上教學駕輕就熟了&#xff0c;但對于線上教學來說&#xff0c;合適的教學支持工具始終是必不可少的。不論是文科教師&#xff0c;還是理科教師&#xff0c;對于真…

一道多線程通信實例分析

程序如下&#xff1a; 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354public static void main(String[] args) throws Exception{ final List list new ArrayList(); final Object lock new Object(); Thread t1 …

react native (一)

開始接觸app方面的工作&#xff0c;真心塞~又開始了周而復始的死磕一個問題專坐一整天的節奏&#xff0c;關鍵是還沒有成績&#xff0c;實在無語。╮(╯▽╰)╭&#xff0c;還是總結一下最近心塞歷程吧……react native中文網&#xff1a;http://reactnative.cn/docs/0.48/gett…

2臺電腦一根網線傳文件_「教程」如何快速的在兩臺電腦間傳輸大文件?

兩臺電腦如何傳輸文件我們常見的就是使用U盤或者網盤進行傳輸但是速度非常的慢我們需要一種文件可以直接復制到另一臺設備的方法首先準備一根網線然后將兩臺電腦連接到同一局域網內在右下角的小電腦打開網絡設置找到共享選項然后將公用文件夾共享開啟在下面密碼保護的共享中你可…

C語言信息系統貼吧,急 c語言學生信息管理系統

該樓層疑似違規已被系統折疊 隱藏此樓查看此樓scanf("%s",s.name);printf("請輸入學生的性別&#xff1a;");scanf("%s",s.sex);printf("請輸入學生的班級&#xff1a;");scanf("%s",s.grade);printf("請輸入學生的成績…

Python 內置模塊之 re

前言 輸入一個手機號18333333333&#xff0c;你是怎么知道這串數字是手機號呢&#xff0c;假如現在你用python寫一段代碼&#xff0c;類似&#xff1a; phone_number input(please input your phone number&#xff1a;) 你怎么判斷這個phone_number是合法的呢&#xff1f;…

mysqld_safe啟動mysql

/home/data_mysql/mysql_3306/bin/mysqld_safe --defaults-file/home/data_mysql/mysql_3306/my.cnf --userroot & 原來的 /home/data_mysql/mysql_3306/bin/mysqld --defaults-file/home/data_mysql/mysql_3306/my.cnf --basedir/home/data_mysql/mysql_3306 --datadir/ho…

訂閱內容解碼失敗(非base64碼)_【火眼金睛】超強解碼能力——邦納全新ABR系列讀碼器來襲!...

點擊關注▲ “邦納”&#xff0c;開啟智造之旅邦納全新ABR系列讀碼器具有超強的解碼能力&#xff0c;兩種不同子系列產品&#xff0c;具有多重分辨率和鏡頭配置。從此讀碼不再是難題&#xff01;產品特點超強的解碼能力使其可以讀取困難的1D/2D碼&#xff0c;包括DPM碼和低對比…

程序員面試、算法研究、編程藝術、紅黑樹4大系列集錦與總結

程序員面試、算法研究、編程藝術、紅黑樹4大經典原創系列集錦與總結 作者&#xff1a;July--結構之法算法之道blog之博主。 時間&#xff1a;2010年10月-2011年6月。 出處&#xff1a;http://blog.csdn.net/v_JULY_v 。 聲明&#xff1a;版權所有&#xff0c;侵犯必究。 前言 …

android中資源文件的兩種訪問方式,在android開發中進行數據存儲與訪問的多種方式介紹...

在android開發中進行數據存儲與訪問的多種方式介紹更新時間&#xff1a;2013年06月07日 16:24:23 作者&#xff1a;很多時候我們的軟件需要對處理后的數據進行存儲或再次訪問&#xff0c;Android為數據存儲提供了多種方式&#xff0c;首先給大家介紹使用文件如何對數據進行存…

MySQL5.6主從復制(讀寫分離)方案

MySQL5.6主從復制(讀寫分離)方案 https://yq.aliyun.com/articles/24255 摘要&#xff1a; 一、前言&#xff1a;為什么MySQL要做主從復制&#xff08;讀寫分離&#xff09;&#xff1f; 通俗來講&#xff0c;如果對數據庫的讀和寫都在同一個數據庫服務器中操作&#xff0c;業務…

Python 內置模塊之 os

os.walk os.walk() 方法是一個簡單易用的文件、目錄遍歷器&#xff0c;可以幫助我們高效的處理文件、目錄方面的事情。簡單來說&#xff0c;就是挨個遍歷指定路徑下的目錄&#xff08;文件夾&#xff09;和文件。用于通過在目錄樹中游走輸出在目錄中的目錄名&#xff0c;文件名…

[arm驅動]linux內核時鐘

《[arm驅動]linux內核時鐘》涉及內核驅動函數四個&#xff0c;內核結構體一個&#xff0c;分析了內核驅動函數一個&#xff1b;可參考的相關應用程序模板或內核驅動模板一個&#xff0c;可參考的相關應用程序模板或內核驅動一個 一、內核定時器 意義:內核定時器是軟件意義上…