DevExpress?Blazor UI組件使用了C#為Blazor Server和Blazor WebAssembly創建高影響力的用戶體驗,這個UI自建庫提供了一套全面的原生Blazor UI組件(包括Pivot Grid、調度程序、圖表、數據編輯器和報表等)。
現代AI驅動的應用程序需要與外部系統或內部應用程序組件無縫交互,許多AI服務提供商現在支持函數調用(也稱為工具調用),這允許AI模型在運行時觸發函數。這種功能對于AI需要執行諸如獲取數據、調用API或在應用程序中啟動任務(從安排約會和修改數據庫信息到更新應用程序的外觀)等操作的代理工作流/應用程序特別有價值。
獲取DevExpress v24.2正式版下載
本文實例中的整個流程是這樣的:模型不是回復用戶消息,而是請求一個帶有指定參數的函數調用,然后聊天客戶端調用該函數并將結果返回給LLM。此時,LLM根據函數返回的值構造一個響應。
在本指南中,我們將探索如何在DevExpress?Blazor DxAiChat組件中啟用函數調用:
- 來自Microsoft.Extensions.AI庫的IChatClient接口
- 來自Microsoft語義內核的插件
開始
要開始,您必須首先將DxAiChat組件集成到應用程序中(請參閱我們的官方指南以獲取更多信息):Add AI Chat to a Project。
接下來注冊您的AI服務,在這個例子中我們將使用Azure OpenAI。下面是一個示例Program.cs設置:
using Azure.AI.OpenAI;
using Microsoft.Extensions.AI;
...
var builder = WebApplication.CreateBuilder(args);
...
// Replace with your endpoint, API key, and deployed AI model name
string azureOpenAIEndpoint = Environment.GetEnvironmentVariable("AZURE_OPENAI_ENDPOINT");
string azureOpenAIKey = Environment.GetEnvironmentVariable("AZURE_OPENAI_API_KEY");
string deploymentName = string.Empty;
...
var azureChatClient = new AzureOpenAIClient(
new Uri(azureOpenAIEndpoint),
new AzureKeyCredential(azureOpenAIKey));IChatClient chatClient = azureChatClient.AsChatClient(deploymentName);builder.Services.AddDevExpressBlazor();
builder.Services.AddChatClient(chatClient);
builder.Services.AddDevExpressAI();
運行項目來確認您可以發送消息和接收AI響應。
使用IChatClient調用工具
首先,定義一個簡單的函數來檢索指定城市的天氣信息。在本例中,這是GetWeatherTool。為了幫助AI理解如何調用GetWeatherTool函數,請使用方法及其參數的System.ComponentModel.Description屬性。LLM使用參數找出最合適的方法調用,并規劃調用順序:
using System.ComponentModel;
using Microsoft.Extensions.AI;public class CustomAIFunctions
{
public static AIFunction GetWeatherTool => AIFunctionFactory.Create(GetWeather);
[Description("Gets the current weather in the city")]
public static string GetWeather([Description("The name of the city")] string city)
{
switch (city)
{
case "Los Angeles":
case "LA":
return GetTemperatureValue(20);
case "London":
return GetTemperatureValue(15);
default:
return $"The information about the weather in {city} is not available.";
}
}
static string GetTemperatureValue(int value)
{
var valueInFahrenheits = value * 9 / 5 + 32;
return $"{valueInFahrenheits}\u00b0F ({value}\u00b0C)";
}
}
修改聊天客戶端注冊,如下所示,來提供可用函數列表,并允許客戶端在回答用戶問題時調用函數。確保首先配置聊天客戶端選項,因為這里的方法調用順序至關重要:
using Azure;
using Azure.AI.OpenAI;
using Microsoft.Extensions.AI;
...
IChatClient chatClient = new ChatClientBuilder(azureChatClient)
.ConfigureOptions(opt =>
{
opt.Tools = [CustomAIFunctions.GetWeatherTool];
})
.UseFunctionInvocation()
.Build();builder.Services.AddChatClient(chatClient);
此時當用戶向AI服務詢問天氣時,該服務將自動觸發GetWeatherTool函數并將結果添加到其響應中。
集成語義內核插件
Microsoft語義內核允許開發人員將高級AI功能整合到應用程序中(包括推理、工作流編排和動態提示工程),Microsoft的框架通過允許應用程序與插件交互和更有效地管理內存來增強AI解決方案。
首先,將以下NuGet包添加到項目中:
- Microsoft.SemanticKernel
- Microsoft.SemanticKernel.Plugins.Core
- Microsoft.SemanticKernel.Connectors.OpenAI?(或為您的AI提供商提供適當的連接器)
如果您已經在應用程序中使用語義內核,并且熟悉插件的概念,可以很容易地將它連接到DevExpress?Blazor DxAiChat控件。
由于DevExpress AI驅動的API使用IChatClient接口與llm一起操作,您需要手動實現接口并從語義內核調用IChatCompletionService方法:
using Microsoft.Extensions.AI;
using Microsoft.SemanticKernel;
using Microsoft.SemanticKernel.ChatCompletion;
using Microsoft.SemanticKernel.Connectors.OpenAI;
...
public class SemanticKernelPluginCallingChatClient : IChatClient {
private IChatCompletionService _chatCompletionService;
private Kernel _kernel;
private OpenAIPromptExecutionSettings _executionSettings;
public SemanticKernelPluginCallingChatClient(Kernel kernel)
{
_kernel = kernel;
_chatCompletionService = _kernel.GetRequiredService();
_executionSettings = new OpenAIPromptExecutionSettings() { ToolCallBehavior = ToolCallBehavior.AutoInvokeKernelFunctions };
}public async Task GetResponseAsync(IEnumerable chatMessages, ChatOptions? options = null, CancellationToken cancellationToken = default)
{
var history = GetChatHistory(chatMessages);
ChatMessageContent message = await _chatCompletionService.GetChatMessageContentAsync(history, _executionSettings, _kernel, cancellationToken);
return new ChatResponse(new ChatMessage(ChatRole.Assistant, message.Content));
}public async IAsyncEnumerable GetStreamingResponseAsync(IEnumerable chatMessages, ChatOptions? options = null, CancellationToken cancellationToken = default)
{
var history = GetChatHistory(chatMessages);
await foreach(var item in _chatCompletionService.GetStreamingChatMessageContentsAsync(history, _executionSettings, _kernel, cancellationToken)) {
yield return new ChatResponseUpdate(ChatRole.Assistant, item.Content);
}
}AuthorRole GetRole(ChatRole chatRole) {
if(chatRole == ChatRole.User) return AuthorRole.User;
if(chatRole == ChatRole.System) return AuthorRole.System;
if(chatRole == ChatRole.Assistant) return AuthorRole.Assistant;
if(chatRole == ChatRole.Tool) return AuthorRole.Tool;
throw new Exception();
}private ChatHistory GetChatHistory(IEnumerable chatMessages)
{
var history = new ChatHistory(chatMessages.Select(x => new ChatMessageContent(GetRole(x.Role), x.Text)));
return history;
}
...
}
實現一個類似于前面函數的語義內核插件,但是用Microsoft.SemanticKernel.KernelFunction屬性修飾main函數方法:
using Microsoft.SemanticKernel;
using System.ComponentModel;
...public class WeatherPlugin {
[KernelFunction]
[Description("Gets the current weather in the city")]
public static string GetWeather([Description("The name of the city")] string city) {
switch(city) {
case "Los Angeles":
case "LA":
return GetTemperatureValue(20);
case "London":
return GetTemperatureValue(15);
default:
return $"The information about the weather in {city} is not available.";
}
}
static string GetTemperatureValue(int value)
{
var valueInFahrenheits = value * 9 / 5 + 32;
return $"{valueInFahrenheits}\u00b0F ({value}\u00b0C)";
}
}
最后,在應用程序啟動時注冊語義內核和聊天客戶端:
using Microsoft.SemanticKernel;
using Microsoft.SemanticKernel.Plugins.Core;
...var semanticKernelBuilder = Kernel.CreateBuilder();
semanticKernelBuilder.AddAzureOpenAIChatCompletion(
deploymentName,
azureOpenAIEndpoint,
azureOpenAIKey);// Add plugins from Microsoft.SemanticKernel.Plugins.Core
#pragma warning disable SKEXP0050
semanticKernelBuilder.Plugins.AddFromType<TimePlugin>(); // this is a built-in plugin
semanticKernelBuilder.Plugins.AddFromType<WeatherPlugin>(); // this is our custom plugin
#pragma warning restore SKEXP0050var globalKernel = semanticKernelBuilder.Build();
builder.Services.AddChatClient(new SemanticKernelPluginCallingChatClient(globalKernel));builder.Services.AddDevExpressAI();
一旦配置好,您的應用程序將使用Semantic Kernel插件來智能地處理請求: