YOLOv8改進------------SPFF-LSKA

YOLOv8改進------------SPFF-LSKA

    • 1、LSAK.py代碼
    • 2、添加YAML文件yolov8_SPPF_LSKA.yaml
    • 3、添加SPPF_LSKA代碼
    • 4、ultralytics/nn/modules/__init__.py注冊模塊
    • 5、ultralytics/nn/tasks.py注冊模塊
    • 6、導入yaml文件訓練

1、LSAK.py代碼

論文
代碼

LSKA.py添加到ultralytics/nn/modules
在這里插入圖片描述

import torch
import torch.nn as nn
import torch.nn.functional as F
from functools import partialfrom timm.models.layers import DropPath, to_2tuple, trunc_normal_
from timm.models.registry import register_model
from timm.models.vision_transformer import _cfg
import mathclass Mlp(nn.Module):def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):super().__init__()out_features = out_features or in_featureshidden_features = hidden_features or in_featuresself.fc1 = nn.Conv2d(in_features, hidden_features, 1)self.dwconv = DWConv(hidden_features)self.act = act_layer()self.fc2 = nn.Conv2d(hidden_features, out_features, 1)self.drop = nn.Dropout(drop)self.apply(self._init_weights)def _init_weights(self, m):if isinstance(m, nn.Linear):trunc_normal_(m.weight, std=.02)if isinstance(m, nn.Linear) and m.bias is not None:nn.init.constant_(m.bias, 0)elif isinstance(m, nn.LayerNorm):nn.init.constant_(m.bias, 0)nn.init.constant_(m.weight, 1.0)elif isinstance(m, nn.Conv2d):fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channelsfan_out //= m.groupsm.weight.data.normal_(0, math.sqrt(2.0 / fan_out))if m.bias is not None:m.bias.data.zero_()def forward(self, x):x = self.fc1(x)x = self.dwconv(x)x = self.act(x)x = self.drop(x)x = self.fc2(x)x = self.drop(x)return xclass LSKA(nn.Module):def __init__(self, dim, k_size):super().__init__()self.k_size = k_sizeif k_size == 7:self.conv0h = nn.Conv2d(dim, dim, kernel_size=(1, 3), stride=(1,1), padding=(0,(3-1)//2), groups=dim)self.conv0v = nn.Conv2d(dim, dim, kernel_size=(3, 1), stride=(1,1), padding=((3-1)//2,0), groups=dim)self.conv_spatial_h = nn.Conv2d(dim, dim, kernel_size=(1, 3), stride=(1,1), padding=(0,2), groups=dim, dilation=2)self.conv_spatial_v = nn.Conv2d(dim, dim, kernel_size=(3, 1), stride=(1,1), padding=(2,0), groups=dim, dilation=2)elif k_size == 11:self.conv0h = nn.Conv2d(dim, dim, kernel_size=(1, 3), stride=(1,1), padding=(0,(3-1)//2), groups=dim)self.conv0v = nn.Conv2d(dim, dim, kernel_size=(3, 1), stride=(1,1), padding=((3-1)//2,0), groups=dim)self.conv_spatial_h = nn.Conv2d(dim, dim, kernel_size=(1, 5), stride=(1,1), padding=(0,4), groups=dim, dilation=2)self.conv_spatial_v = nn.Conv2d(dim, dim, kernel_size=(5, 1), stride=(1,1), padding=(4,0), groups=dim, dilation=2)elif k_size == 23:self.conv0h = nn.Conv2d(dim, dim, kernel_size=(1, 5), stride=(1,1), padding=(0,(5-1)//2), groups=dim)self.conv0v = nn.Conv2d(dim, dim, kernel_size=(5, 1), stride=(1,1), padding=((5-1)//2,0), groups=dim)self.conv_spatial_h = nn.Conv2d(dim, dim, kernel_size=(1, 7), stride=(1,1), padding=(0,9), groups=dim, dilation=3)self.conv_spatial_v = nn.Conv2d(dim, dim, kernel_size=(7, 1), stride=(1,1), padding=(9,0), groups=dim, dilation=3)elif k_size == 35:self.conv0h = nn.Conv2d(dim, dim, kernel_size=(1, 5), stride=(1,1), padding=(0,(5-1)//2), groups=dim)self.conv0v = nn.Conv2d(dim, dim, kernel_size=(5, 1), stride=(1,1), padding=((5-1)//2,0), groups=dim)self.conv_spatial_h = nn.Conv2d(dim, dim, kernel_size=(1, 11), stride=(1,1), padding=(0,15), groups=dim, dilation=3)self.conv_spatial_v = nn.Conv2d(dim, dim, kernel_size=(11, 1), stride=(1,1), padding=(15,0), groups=dim, dilation=3)elif k_size == 41:self.conv0h = nn.Conv2d(dim, dim, kernel_size=(1, 5), stride=(1,1), padding=(0,(5-1)//2), groups=dim)self.conv0v = nn.Conv2d(dim, dim, kernel_size=(5, 1), stride=(1,1), padding=((5-1)//2,0), groups=dim)self.conv_spatial_h = nn.Conv2d(dim, dim, kernel_size=(1, 13), stride=(1,1), padding=(0,18), groups=dim, dilation=3)self.conv_spatial_v = nn.Conv2d(dim, dim, kernel_size=(13, 1), stride=(1,1), padding=(18,0), groups=dim, dilation=3)elif k_size == 53:self.conv0h = nn.Conv2d(dim, dim, kernel_size=(1, 5), stride=(1,1), padding=(0,(5-1)//2), groups=dim)self.conv0v = nn.Conv2d(dim, dim, kernel_size=(5, 1), stride=(1,1), padding=((5-1)//2,0), groups=dim)self.conv_spatial_h = nn.Conv2d(dim, dim, kernel_size=(1, 17), stride=(1,1), padding=(0,24), groups=dim, dilation=3)self.conv_spatial_v = nn.Conv2d(dim, dim, kernel_size=(17, 1), stride=(1,1), padding=(24,0), groups=dim, dilation=3)self.conv1 = nn.Conv2d(dim, dim, 1)def forward(self, x):u = x.clone()attn = self.conv0h(x)attn = self.conv0v(attn)attn = self.conv_spatial_h(attn)attn = self.conv_spatial_v(attn)attn = self.conv1(attn)return u * attnclass Attention(nn.Module):def __init__(self, d_model, k_size):super().__init__()self.proj_1 = nn.Conv2d(d_model, d_model, 1)self.activation = nn.GELU()self.spatial_gating_unit = LSKA(d_model, k_size)self.proj_2 = nn.Conv2d(d_model, d_model, 1)def forward(self, x):shorcut = x.clone()x = self.proj_1(x)x = self.activation(x)x = self.spatial_gating_unit(x)x = self.proj_2(x)x = x + shorcutreturn xclass Block(nn.Module):def __init__(self, dim, k_size, mlp_ratio=4., drop=0.,drop_path=0., act_layer=nn.GELU):super().__init__()self.norm1 = nn.BatchNorm2d(dim)self.attn = Attention(dim, k_size)self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()self.norm2 = nn.BatchNorm2d(dim)mlp_hidden_dim = int(dim * mlp_ratio)self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)layer_scale_init_value = 1e-2self.layer_scale_1 = nn.Parameter(layer_scale_init_value * torch.ones((dim)), requires_grad=True)self.layer_scale_2 = nn.Parameter(layer_scale_init_value * torch.ones((dim)), requires_grad=True)self.apply(self._init_weights)def _init_weights(self, m):if isinstance(m, nn.Linear):trunc_normal_(m.weight, std=.02)if isinstance(m, nn.Linear) and m.bias is not None:nn.init.constant_(m.bias, 0)elif isinstance(m, nn.LayerNorm):nn.init.constant_(m.bias, 0)nn.init.constant_(m.weight, 1.0)elif isinstance(m, nn.Conv2d):fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channelsfan_out //= m.groupsm.weight.data.normal_(0, math.sqrt(2.0 / fan_out))if m.bias is not None:m.bias.data.zero_()def forward(self, x):x = x + self.drop_path(self.layer_scale_1.unsqueeze(-1).unsqueeze(-1) * self.attn(self.norm1(x)))x = x + self.drop_path(self.layer_scale_2.unsqueeze(-1).unsqueeze(-1) * self.mlp(self.norm2(x)))return xclass OverlapPatchEmbed(nn.Module):""" Image to Patch Embedding"""def __init__(self, img_size=224, patch_size=7, stride=4, in_chans=3, embed_dim=768):super().__init__()patch_size = to_2tuple(patch_size)self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=stride,padding=(patch_size[0] // 2, patch_size[1] // 2))self.norm = nn.BatchNorm2d(embed_dim)self.apply(self._init_weights)def _init_weights(self, m):if isinstance(m, nn.Linear):trunc_normal_(m.weight, std=.02)if isinstance(m, nn.Linear) and m.bias is not None:nn.init.constant_(m.bias, 0)elif isinstance(m, nn.LayerNorm):nn.init.constant_(m.bias, 0)nn.init.constant_(m.weight, 1.0)elif isinstance(m, nn.Conv2d):fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channelsfan_out //= m.groupsm.weight.data.normal_(0, math.sqrt(2.0 / fan_out))if m.bias is not None:m.bias.data.zero_()def forward(self, x):x = self.proj(x)_, _, H, W = x.shapex = self.norm(x)return x, H, Wclass VAN(nn.Module):def __init__(self, img_size=224, in_chans=3, num_classes=1000, embed_dims=[64, 128, 256, 512],mlp_ratios=[4, 4, 4, 4], drop_rate=0., drop_path_rate=0., norm_layer=nn.LayerNorm,depths=[3, 4, 6, 3], num_stages=4, flag=False, k_size=7, pretrained_cfg=None):super().__init__()if flag == False:self.num_classes = num_classesself.depths = depthsself.num_stages = num_stagesdpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))]  # stochastic depth decay rulecur = 0for i in range(num_stages):patch_embed = OverlapPatchEmbed(img_size=img_size if i == 0 else img_size // (2 ** (i + 1)),patch_size=7 if i == 0 else 3,stride=4 if i == 0 else 2,in_chans=in_chans if i == 0 else embed_dims[i - 1],embed_dim=embed_dims[i])block = nn.ModuleList([Block(dim=embed_dims[i], k_size=k_size, mlp_ratio=mlp_ratios[i], drop=drop_rate, drop_path=dpr[cur + j])for j in range(depths[i])])norm = norm_layer(embed_dims[i])cur += depths[i]setattr(self, f"patch_embed{i + 1}", patch_embed)setattr(self, f"block{i + 1}", block)setattr(self, f"norm{i + 1}", norm)# classification headself.head = nn.Linear(embed_dims[3], num_classes) if num_classes > 0 else nn.Identity()self.apply(self._init_weights)def _init_weights(self, m):if isinstance(m, nn.Linear):trunc_normal_(m.weight, std=.02)if isinstance(m, nn.Linear) and m.bias is not None:nn.init.constant_(m.bias, 0)elif isinstance(m, nn.LayerNorm):nn.init.constant_(m.bias, 0)nn.init.constant_(m.weight, 1.0)elif isinstance(m, nn.Conv2d):fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channelsfan_out //= m.groupsm.weight.data.normal_(0, math.sqrt(2.0 / fan_out))if m.bias is not None:m.bias.data.zero_()def freeze_patch_emb(self):self.patch_embed1.requires_grad = False@torch.jit.ignoredef no_weight_decay(self):return {'pos_embed1', 'pos_embed2', 'pos_embed3', 'pos_embed4', 'cls_token'}  # has pos_embed may be betterdef get_classifier(self):return self.headdef reset_classifier(self, num_classes, global_pool=''):self.num_classes = num_classesself.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()def forward_features(self, x):B = x.shape[0]for i in range(self.num_stages):patch_embed = getattr(self, f"patch_embed{i + 1}")block = getattr(self, f"block{i + 1}")norm = getattr(self, f"norm{i + 1}")x, H, W = patch_embed(x)for blk in block:x = blk(x)x = x.flatten(2).transpose(1, 2)x = norm(x)if i == self.num_stages - 1:x_feature_map = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()if i != self.num_stages - 1:x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()return x_feature_map, x.mean(dim=1)def forward(self, x):_, x = self.forward_features(x)x = self.head(x)return xclass DWConv(nn.Module):def __init__(self, dim=768):super(DWConv, self).__init__()self.dwconv = nn.Conv2d(dim, dim, 3, 1, 1, bias=True, groups=dim)def forward(self, x):x = self.dwconv(x)return xdef _conv_filter(state_dict, patch_size=16):""" convert patch embedding weight from manual patchify + linear proj to conv"""out_dict = {}for k, v in state_dict.items():if 'patch_embed.proj.weight' in k:v = v.reshape((v.shape[0], 3, patch_size, patch_size))out_dict[k] = vreturn out_dictmodel_urls = {"van_tiny": "https://huggingface.co/Visual-Attention-Network/VAN-Tiny-original/resolve/main/van_tiny_754.pth.tar","van_small": "https://huggingface.co/Visual-Attention-Network/VAN-Small-original/resolve/main/van_small_811.pth.tar","van_base": "https://huggingface.co/Visual-Attention-Network/VAN-Base-original/resolve/main/van_base_828.pth.tar","van_large": "https://huggingface.co/Visual-Attention-Network/VAN-Large-original/resolve/main/van_large_839.pth.tar",
}def load_model_weights(model, arch, kwargs):url = model_urls[arch]checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu", check_hash=True)strict = Trueif "num_classes" in kwargs and kwargs["num_classes"] != 1000:strict = Falsedel checkpoint["state_dict"]["head.weight"]del checkpoint["state_dict"]["head.bias"]print('load model weights....')model.load_state_dict(checkpoint["state_dict"], strict=strict)return model@register_model
def van_tiny(pretrained=False, **kwargs):model = VAN(embed_dims=[32, 64, 160, 256], mlp_ratios=[8, 8, 4, 4],norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 3, 5, 2],**kwargs)model.default_cfg = _cfg()if pretrained:model = load_model_weights(model, "van_tiny", kwargs)return model@register_model
def van_small(pretrained=False, **kwargs):model = VAN(embed_dims=[64, 128, 320, 512], mlp_ratios=[8, 8, 4, 4],norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[2, 2, 4, 2],**kwargs)model.default_cfg = _cfg()if pretrained:model = load_model_weights(model, "van_small", kwargs)return model@register_model
def van_base(pretrained=False, **kwargs):model = VAN(embed_dims=[64, 128, 320, 512], mlp_ratios=[8, 8, 4, 4],norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 3, 12, 3],**kwargs)model.default_cfg = _cfg()if pretrained:model = load_model_weights(model, "van_base", kwargs)return model

2、添加YAML文件yolov8_SPPF_LSKA.yaml

添加到v8配置文件中ultralytics/cfg/models/v8/yolov8_SPPF_LSKA.yaml
在這里插入圖片描述

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect# Parameters
nc: 7  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'# [depth, width, max_channels]n: [0.33, 0.25, 1024]  # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPss: [0.33, 0.50, 1024]  # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPsm: [0.67, 0.75, 768]   # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPsl: [1.00, 1.00, 512]   # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPsx: [1.00, 1.25, 512]   # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs# YOLOv8.0n backbone
backbone:# [from, repeats, module, args]- [-1, 1, Conv, [64, 3, 2]]  # 0-P1/2- [-1, 1, Conv, [128, 3, 2]]  # 1-P2/4- [-1, 3, C2f, [128, True]]- [-1, 1, Conv, [256, 3, 2]]  # 3-P3/8- [-1, 6, C2f, [256, True]]- [-1, 1, Conv, [512, 3, 2]]  # 5-P4/16- [-1, 6, C2f, [512, True]]- [-1, 1, Conv, [1024, 3, 2]]  # 7-P5/32- [-1, 3, C2f, [1024, True]]- [-1, 1, SPPF_LSKA, [1024, 5]]  # 9# YOLOv8.0n head
head:- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 6], 1, Concat, [1]]  # cat backbone P4- [-1, 3, C2f, [512]]  # 12- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 4], 1, Concat, [1]]  # cat backbone P3- [-1, 3, C2f, [256]]  # 15 (P3/8-small)- [-1, 1, Conv, [256, 3, 2]]- [[-1, 12], 1, Concat, [1]]  # cat head P4- [-1, 3, C2f, [512]]  # 18 (P4/16-medium)- [-1, 1, Conv, [512, 3, 2]]- [[-1, 9], 1, Concat, [1]]  # cat head P5- [-1, 3, C2f, [1024]]  # 21 (P5/32-large)- [[15, 18, 21], 1, Detect, [nc]]  # Detect(P3, P4, P5)

3、添加SPPF_LSKA代碼

(1)SPPF_LSKA代碼添加到ultralytics/nn/modules/block.py
在這里插入圖片描述

class SPPF_LSKA(nn.Module):"""Spatial Pyramid Pooling - Fast (SPPF) layer for YOLOv5 by Glenn Jocher."""def __init__(self, c1, c2, k=5):  # equivalent to SPP(k=(5, 9, 13))super().__init__()c_ = c1 // 2  # hidden channelsself.cv1 = Conv(c1, c_, 1, 1)self.cv2 = Conv(c_ * 4, c2, 1, 1)self.m = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2)self.lska = LSKA(c_ * 4, k_size=11)def forward(self, x):"""Forward pass through Ghost Convolution block."""x = self.cv1(x)y1 = self.m(x)y2 = self.m(y1)return self.cv2(self.lska(torch.cat((x, y1, y2, self.m(y2)), 1)))

(2)block.py代碼頂部__all__中添加’SPPF_LSKA’,并導入LSKA模塊,添加時一定注意使用英文標點符號

'SPPF_LSKA'
from .LSKA import LSKA

在這里插入圖片描述

4、ultralytics/nn/modules/init.py注冊模塊

(1).block中導入SPPF_LSKA
在這里插入圖片描述
(2)__all__中添加 ‘SPPF_LSKA’
在這里插入圖片描述

5、ultralytics/nn/tasks.py注冊模塊

(2)在from ultralytics.nn.modules import導入SPPF_LSKA
在這里插入圖片描述
(2)tasks.py中的def parse_modelif m in 語句中添加SPPF_LSKA

在這里插入圖片描述

6、導入yaml文件訓練

在這里插入圖片描述

成功!!!!!!!
參考文章
https://blog.csdn.net/2301_78698967/article/details/139765522
https://blog.csdn.net/pope888/article/details/135536385

本文來自互聯網用戶投稿,該文觀點僅代表作者本人,不代表本站立場。本站僅提供信息存儲空間服務,不擁有所有權,不承擔相關法律責任。
如若轉載,請注明出處:http://www.pswp.cn/diannao/72522.shtml
繁體地址,請注明出處:http://hk.pswp.cn/diannao/72522.shtml
英文地址,請注明出處:http://en.pswp.cn/diannao/72522.shtml

如若內容造成侵權/違法違規/事實不符,請聯系多彩編程網進行投訴反饋email:809451989@qq.com,一經查實,立即刪除!

相關文章

[Lc(2)滑動窗口_1] 長度最小的數組 | 無重復字符的最長子串 | 最大連續1的個數 III | 將 x 減到 0 的最小操作數

目錄 1. 長度最小的字數組 題解 代碼 ?2.無重復字符的最長子串 題解 代碼 3.最大連續1的個數 III 題解 代碼 4.將 x 減到 0 的最小操作數 題解 代碼 1. 長度最小的字數組 題目鏈接:209.長度最小的字數組 題目分析: 給定一個含有 n 個 正整數 的數組…

安卓binder驅動內核日志調試打印開放及原理(第一節)

背景: 經常有學員朋友在做系統開發時候,有時候遇到binder相關的一些問題,這個時候可能就需要比較多的binder相關日志,但是正常情況下這些binder通訊的的內核日志都是沒有的打印的,因為經常binder通訊太過于頻繁&#…

docker 安裝達夢數據庫(離線)

docker安裝達夢數據庫,官網上已經下載不了docker版本的了,下面可通過百度網盤下載 通過網盤分享的文件:dm8_20240715_x86_rh6_rq_single.tar.zip 鏈接: https://pan.baidu.com/s/1_ejcs_bRLZpICf69mPdK2w?pwdszj9 提取碼: szj9 上傳到服務…

MWC 2025 | 紫光展銳聯合移遠通信推出全面支持R16特性的5G模組RG620UA-EU

2025年世界移動通信大會(MWC 2025)期間,紫光展銳聯合移遠通信,正式發布了全面支持5G R16特性的模組RG620UA-EU,以強大的靈活性和便捷性賦能產業。 展銳芯加持,關鍵性能優異 RG620UA-EU模組基于紫光展銳V62…

達夢適配記錄-檢查服務器

service DmServicedmdb status 查看是否開啟,沒有配置systemctl,查看《DM8_Linux 服務腳本使用手冊》2.1.2.2 1 .拷貝服務模板文件( DmService )到目錄( /opt/dmdbms/bin ),并將新文…

Pipeline模式詳解:提升程序處理效率的設計模式

文章目錄 Pipeline模式詳解:提升程序處理效率的設計模式引言Pipeline的基本概念Pipeline的工作原理Pipeline的優勢Pipeline的應用場景1. 數據處理2. DevOps中的CI/CD3. 機器學習4. 圖像處理 常見的Pipeline實現方式1. 函數式編程中的Pipeline2. 基于消息隊列的Pipel…

STM32單片機芯片與內部115 DSP-FIR IIR低通 高通 帶通 帶阻 中值 自適應 濾波器 逐個數據實時 樣條插值擬合

目錄 一、FIR 低通、高通、帶通、帶阻 1、FIR濾波器特點 2、濾波器結構 3、濾波器系數 4、濾波實現 5、FIR 濾波后的群延遲 二、IIR 低通、高通、帶通、帶阻 1、IIR濾波器特點 2、濾波器結構 3、濾波器系數 4、濾波實現 5、IIR濾波后的群延遲 三、中值濾波 1、中值…

C語言_圖書管理系統_借閱系統管理

?? 歡迎大家來到小傘的大講堂?? 🎈🎈養成好習慣,先贊后看哦~🎈🎈 所屬專欄:數據結構與算法 小傘的主頁:xiaosan_blog 本文所需對順序表的理解: 注:由于順序表實現圖書…

表達式基礎

文章目錄 1、表達式組成1、運算符 2、表達式的分類1、算數運算符1、自增運算符和自減運算2、取余運算(%)3、除法運算(/)4、案例 2、關系運算符3、邏輯運算符4、條件運算符(三目運算符)1、案例 5、賦值運算()1、賦值類型轉換2、復合賦值運算 6、逗號運算7、取地址運算(&)8、…

除了合并接口,還有哪些優化 Flask API 的方法?

除了合并接口,還有許多其他方法可以優化 Flask API,以下從性能優化、代碼結構優化、安全性優化、錯誤處理優化等方面詳細介紹: 性能優化 1. 使用緩存 內存緩存:可以使用 Flask-Caching 擴展來實現內存緩存,減少對數…

Web服務器配置

配置虛擬主機 通過虛擬主機,可以實現用自定義的域名來訪問,并且可以為不同的域名指定不同的站點目錄。 配置IP地址和域名的映射關系 申請真實的域名需要一定的費用,為了方便開發,可以通過修改hosts文件來實現將任意域名解析到本…

爬蟲逆向實戰小記——解決webpack實記

注意!!!!某XX網站實例僅作為學習案例,禁止其他個人以及團體做謀利用途!!! aHR0cHM6Ly9wbW9zLnhqLnNnY2MuY29tLmNuOjIwMDgwL3B4Zi1zZXR0bGVtZW50LW91dG5ldHB1Yi8jL3B4Zi1zZXR0bGVtZW5…

藍橋杯 之 前綴和與查分

文章目錄 題目求和棋盤挖礦 前綴和有利于快速求解 區間的和、異或值 、乘積等情況差分是前綴和的反操作 前綴和 一維前綴和: # 原始的數組num,下標從1到n n len(num) pre [0]*(n1) for i in range(n):pre[i1] pre[i] num[i] # 如果需要求解num[l] 到num[r] 的區…

Windows10下本地搭建Manim環境

文章目錄 1. 簡介2. Python環境3. uv工具4. Latex軟件5. 安裝Manim數學庫6. 中文支持參考 1. 簡介 manim是個一科普動畫的庫, 本文用到的是社區版本。 2. Python環境 這個不用多說,可以參考其他的文章。記得把pip也安上。 3. uv工具 上面的pip是老…

#UVM# 關于field automation機制中的 pack_bytes 和unpack_bytes 函數剖析

一 pack_bytes 函數 在 UVM 中,pack_bytes 函數用于將類中的所有字段打包成一個字節流(byte stream)。這是 UVM 提供的字段自動化(field automation)機制的一部分,用于簡化數據打包和傳輸。 extern function int pack_bytes(ref byte unsigned bytestream[], input uv…

YOLOv8 自定義目標檢測

一、引言 YOLOv8 不僅支持預訓練模型的推理,還允許用戶將其應用于自定義對象檢測。本文將詳細介紹如何使用 YOLOv8 訓練一個新的模型,并在自定義數據集上進行對象檢測。 二、數據集準備 1. 數據集格式 YOLOv8 支持多種數據集格式,包括 CO…

關于tresos Studio(EB)的MCAL配置之GPT

概念 GPT,全稱General Purpose Timer,就是個通用定時器,取的名字奇怪了點。定時器是一定要的,要么提供給BSW去使用,要么提供給OS去使用。 配置 General GptDeinitApi控制接口Gpt_DeInit是否啟用 GptEnableDisable…

Dify 開源大語言模型應用開發平臺使用(一)

文章目錄 一、創建鋰電池專業知識解答應用1.1 應用初始化 二、核心功能模塊詳解2.1 知識庫構建2.2 工作流與節點編排節點類型說明工作流設計示例:鋰電池選型咨詢 2.3 變量管理 三、測試與調試3.1 單元測試3.2 壓力測試3.3 安全驗證 四、部署與優化建議4.1 部署配置4…

《Java基礎 聊天窗口案例:剖析 GUI、文件 I/O 等關鍵技術知識》

1. 面向對象編程 類與對象:代碼中定義了 Chat 類,它是整個程序的核心,封裝了與聊天窗口相關的屬性和方法。在 main 方法中創建了 Chat 類的對象,并調用其方法來完成相應的功能。繼承與多態:ButtonClickListener 類實現…

IDE集成開發環境MyEclipse中安裝SVN

打開Myeclipse的help菜單----install from site 點擊add彈出對話框 在輸入框中輸入對應內容 http://subclipse.tigris.org/update_1.10.x 點擊OK之后,會刷新出兩個選項,需要選中的 點擊next,出現許可的時候選中同意,一直結束等…