DenseNet 模型代碼詳解
下面是 DenseNet 模型代碼的逐部分詳細解析:
1. 導入模塊
import re
from collections import OrderedDict
from functools import partial
from typing import Any, Optionalimport torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint as cp
from torch import Tensorfrom ..transforms._presets import ImageClassification
from ..utils import _log_api_usage_once
from ._api import register_model, Weights, WeightsEnum
from ._meta import _IMAGENET_CATEGORIES
from ._utils import _ovewrite_named_param, handle_legacy_interface
- re: 正則表達式模塊,用于處理權重名稱的轉換
- OrderedDict: 有序字典,用于按順序構建網絡層
- partial: 創建部分函數,用于預設圖像轉換參數
- torch.nn: PyTorch 的神經網絡模塊
- torch.utils.checkpoint: 內存優化技術,減少訓練時的內存占用
- ImageClassification: 圖像分類的預處理轉換
- register_model: 注冊模型的裝飾器
- Weights/WeightsEnum: 預訓練權重相關類
- _IMAGENET_CATEGORIES: ImageNet 數據集類別標簽
- 模型工具函數: 覆蓋參數、處理舊版接口等
2. DenseNet 基礎層 (_DenseLayer)
class _DenseLayer(nn.Module):def __init__(self, num_input_features: int, growth_rate: int, bn_size: int, drop_rate: float, memory_efficient: bool = False) -> None:super().__init__()# 第一個卷積塊 (1x1 卷積)self.norm1 = nn.BatchNorm2d(num_input_features)self.relu1 = nn.ReLU(inplace=True)self.conv1 = nn.Conv2d(num_input_features, bn_size * growth_rate, kernel_size=1, stride=1, bias=False)# 第二個卷積塊 (3x3 卷積)self.norm2 = nn.BatchNorm2d(bn_size * growth_rate)self.relu2 = nn.ReLU(inplace=True)self.conv2 = nn.Conv2d(bn_size * growth_rate, growth_rate, kernel_size=3, stride=1, padding=1, bias=False)self.drop_rate = float(drop_rate)self.memory_efficient = memory_efficient
- Bottleneck 結構: 由兩個卷積層組成,減少計算量
- 1x1 卷積: 降維,輸出通道數為
bn_size * growth_rate
- 3x3 卷積: 主卷積層,輸出通道數為
growth_rate
- memory_efficient: 是否使用梯度檢查點節省內存
前向傳播邏輯
def bn_function(self, inputs: list[Tensor]) -> Tensor:# 拼接所有輸入特征concated_features = torch.cat(inputs, 1)# 通過第一個卷積塊bottleneck_output = self.conv1(self.relu1(self.norm1(concated_features)))return bottleneck_outputdef forward(self, input: Tensor) -> Tensor:if isinstance(input, Tensor):prev_features = [input]else:prev_features = input# 內存高效模式處理if self.memory_efficient and self.any_requires_grad(prev_features):bottleneck_output = self.call_checkpoint_bottleneck(prev_features)else:bottleneck_output = self.bn_function(prev_features)# 通過第二個卷積塊new_features = self.conv2(self.relu2(self.norm2(bottleneck_output)))# 應用Dropoutif self.drop_rate > 0:new_features = F.dropout(new_features, p=self.drop_rate, training=self.training)return new_features
- 特征拼接: 將前面所有層的輸出拼接在一起
- 梯度檢查點: 在內存高效模式下,使用檢查點減少內存占用
- Dropout: 隨機丟棄部分神經元,防止過擬合
3. Dense 塊 (_DenseBlock)
class _DenseBlock(nn.ModuleDict):def __init__(self,num_layers: int,num_input_features: int,bn_size: int,growth_rate: int,drop_rate: float,memory_efficient: bool = False,) -> None:super().__init__()# 創建多個密集層for i in range(num_layers):layer = _DenseLayer(num_input_features + i * growth_rate,growth_rate=growth_rate,bn_size=bn_size,drop_rate=drop_rate,memory_efficient=memory_efficient,)self.add_module("denselayer%d" % (i + 1), layer)
- 模塊字典: 存儲多個密集層
- 輸入特征計算: 每增加一層,輸入特征增加
growth_rate
個通道
前向傳播
def forward(self, init_features: Tensor) -> Tensor:features = [init_features]# 逐層處理并收集輸出for name, layer in self.items():new_features = layer(features)features.append(new_features)# 拼接所有層的輸出return torch.cat(features, 1)
- 特征累積: 每一層的輸出都添加到特征列表中
- 特征拼接: 將所有層的輸出沿通道維度拼接
4. 過渡層 (_Transition)
class _Transition(nn.Sequential):def __init__(self, num_input_features: int, num_output_features: int) -> None:super().__init__()# 壓縮特征維度self.norm = nn.BatchNorm2d(num_input_features)self.relu = nn.ReLU(inplace=True)self.conv = nn.Conv2d(num_input_features, num_output_features, kernel_size=1, stride=1, bias=False)# 空間下采樣self.pool = nn.AvgPool2d(kernel_size=2, stride=2)
- 特征壓縮: 1x1 卷積減少通道數(通常減半)
- 空間降維: 平均池化減小特征圖尺寸
5. DenseNet 主模型
class DenseNet(nn.Module):def __init__(self,growth_rate: int = 32,block_config: tuple[int, int, int, int] = (6, 12, 24, 16),num_init_features: int = 64,bn_size: int = 4,drop_rate: float = 0,num_classes: int = 1000,memory_efficient: bool = False,) -> None:super().__init__()_log_api_usage_once(self) # 記錄API使用情況# 初始卷積層self.features = nn.Sequential(OrderedDict([("conv0", nn.Conv2d(3, num_init_features, kernel_size=7, stride=2, padding=3, bias=False)),("norm0", nn.BatchNorm2d(num_init_features)),("relu0", nn.ReLU(inplace=True)),("pool0", nn.MaxPool2d(kernel_size=3, stride=2, padding=1)),]))# 構建多個Dense塊和過渡層num_features = num_init_featuresfor i, num_layers in enumerate(block_config):# 添加Dense塊block = _DenseBlock(num_layers=num_layers,num_input_features=num_features,bn_size=bn_size,growth_rate=growth_rate,drop_rate=drop_rate,memory_efficient=memory_efficient,)self.features.add_module("denseblock%d" % (i + 1), block)num_features += num_layers * growth_rate# 添加過渡層(最后一個塊除外)if i != len(block_config) - 1:trans = _Transition(num_features, num_features // 2)self.features.add_module("transition%d" % (i + 1), trans)num_features = num_features // 2# 最終批歸一化self.features.add_module("norm5", nn.BatchNorm2d(num_features))# 分類器self.classifier = nn.Linear(num_features, num_classes)# 參數初始化for m in self.modules():if isinstance(m, nn.Conv2d):nn.init.kaiming_normal_(m.weight)elif isinstance(m, nn.BatchNorm2d):nn.init.constant_(m.weight, 1)nn.init.constant_(m.bias, 0)elif isinstance(m, nn.Linear):nn.init.constant_(m.bias, 0)
- 初始卷積層: 快速下采樣輸入圖像
- 塊配置: 控制每個Dense塊中的層數
- 通道管理: 通過過渡層壓縮通道數
- Kaiming初始化: 卷積層的權重初始化
- 批歸一化初始化: 權重設為1,偏置設為0
前向傳播
def forward(self, x: Tensor) -> Tensor:features = self.features(x)out = F.relu(features, inplace=True)out = F.adaptive_avg_pool2d(out, (1, 1)) # 全局平均池化out = torch.flatten(out, 1) # 展平特征out = self.classifier(out) # 分類return out
- 特征提取: 通過多個Dense塊和過渡層
- 全局平均池化: 將特征圖轉換為特征向量
- 全連接層: 輸出分類結果
6. 權重加載函數
def _load_state_dict(model: nn.Module, weights: WeightsEnum, progress: bool) -> None:# 匹配舊版權重名稱模式pattern = re.compile(r"^(.*denselayer\d+\.(?:norm|relu|conv))\.((?:[12])\.(?:weight|bias|running_mean|running_var))$")state_dict = weights.get_state_dict(progress=progress, check_hash=True)# 轉換權重名稱for key in list(state_dict.keys()):res = pattern.match(key)if res:new_key = res.group(1) + res.group(2)state_dict[new_key] = state_dict[key]del state_dict[key]# 加載權重model.load_state_dict(state_dict)
- 權重名稱轉換: 適配舊版權重命名方式
- 哈希校驗: 確保下載的權重文件完整無誤
7. 模型工廠函數
def _densenet(growth_rate: int,block_config: tuple[int, int, int, int],num_init_features: int,weights: Optional[WeightsEnum],progress: bool,**kwargs: Any,
) -> DenseNet:# 根據權重調整輸出類別數if weights is not None:_ovewrite_named_param(kwargs, "num_classes", len(weights.meta["categories"]))# 創建模型model = DenseNet(growth_rate, block_config, num_init_features, **kwargs)# 加載預訓練權重if weights is not None:_load_state_dict(model=model, weights=weights, progress=progress)return model
- 參數覆蓋: 根據預訓練權重調整輸出類別數
- 靈活配置: 支持不同DenseNet變體
8. 預訓練權重定義
_COMMON_META = {"min_size": (29, 29), # 最小輸入尺寸"categories": _IMAGENET_CATEGORIES, # ImageNet類別"recipe": "https://github.com/pytorch/vision/pull/116", # 訓練方法
}class DenseNet121_Weights(WeightsEnum):IMAGENET1K_V1 = Weights(url="https://download.pytorch.org/models/densenet121-a639ec97.pth",transforms=partial(ImageClassification, crop_size=224), # 圖像預處理meta={**_COMMON_META,"num_params": 7978856, # 參數量"_metrics": { # 性能指標"ImageNet-1K": {"acc@1": 74.434, # top-1準確率"acc@5": 91.972, # top-5準確率}},"_ops": 2.834, # 計算量 (GFLOPs)"_file_size": 30.845, # 文件大小 (MB)},)DEFAULT = IMAGENET1K_V1 # 默認權重
- 權重元數據: 包含模型性能和資源信息
- 預處理定義: 指定圖像分類任務的預處理流程
- 性能指標: 提供在ImageNet上的評估結果
9. 模型變體實現
@register_model() # 注冊模型
@handle_legacy_interface(weights=("pretrained", DenseNet121_Weights.IMAGENET1K_V1))
def densenet121(*, weights: Optional[DenseNet121_Weights] = None, progress: bool = True, **kwargs: Any) -> DenseNet:weights = DenseNet121_Weights.verify(weights) # 驗證權重return _densenet(32, (6, 12, 24, 16), 64, weights, progress, **kwargs)
- DenseNet121: 增長率32,塊配置[6,12,24,16],初始特征64
- DenseNet169: 增長率32,塊配置[6,12,32,32],初始特征64
- DenseNet201: 增長率32,塊配置[6,12,48,32],初始特征64
- DenseNet161: 增長率48,塊配置[6,12,36,24],初始特征96
DenseNet 關鍵特點
- 密集連接: 每一層都接收前面所有層的特征圖作為輸入
- 特征重用: 通過拼接實現多層次特征融合
- 瓶頸設計: 1×1卷積減少計算量
- 過渡層: 壓縮特征維度和空間尺寸
- 高效內存: 可選的內存優化模式
DenseNet通過密集連接促進了特征重用,減少了梯度消失問題,提高了參數效率,在各種視覺任務中表現出色。