首先構建一個線性的點狀圖
import warnings
warnings.filterwarnings('ignore')
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
from sklearn.linear_model import LinearRegression
import tensorflow as tf X = np.linspace(2,12,50).reshape(-1,1)w = np.random.randint(1,6,size = 1)[0]b = np.random.randint(-5,5,size = 1)[0]
y = X*w + b + np.random.randn(50,1)*0.7plt.scatter(X,y)
查看X,y的類型
print(X.shape,y.shape)
(50, 1) (50, 1)
使用線性回歸查看預測的系數為了對比TF
linear = LinearRegression()linear.fit(X,y)print(linear.coef_,linear.intercept_)
[[3.05044116]] [-1.33814071]
print(w,b) #最后測試對比
3 -1
Tensorflow完成線性回歸
1、定義占位符、變量
# 線性回歸理論基礎是最小二乘法
X_train = tf.placeholder(dtype=tf.float32,shape = [50,1],name = 'data')y_train = tf.placeholder(dtype=tf.float32,shape = [50,1],name = 'target')w_ = tf.Variable(initial_value=tf.random_normal(shape = [1,1]),name = 'weight')b_ = tf.Variable(initial_value=tf.random_normal(shape = [1]),name = 'bias')
2、構造方程(線性方程,矩陣乘法)
# 構建方程 f(x) = Xw + b
# 構建的方程,就是預測的結果
y_pred = tf.matmul(X_train,w_) + b_
# shape = (50,1)
y_pred
<tf.Tensor ‘add:0’ shape=(50, 1) dtype=float32>
3、最小二乘法(平均最小二乘法)
cost=1m∑i=0M(y?ypred)2cost = \frac{1}{m}\sum_{i = 0}^M(y - y_{pred})^2cost=m1?i=0∑M?(y?ypred?)2
# 二乘法(y_pred - y_train)**2 返回的結果是列表,沒有辦法比較大小
# 平均最小二乘法,數值,mean
# 平均:每一個樣本都考慮進去了
cost = tf.reduce_mean(tf.pow(y_pred - y_train,2))
cost
<tf.Tensor ‘Mean_1:0’ shape=() dtype=float32>
4、梯度下降(tf,提供了方法)
# 優化,cost損失函數,越小越好
opt = tf.train.GradientDescentOptimizer(0.01).minimize(cost)
opt
<tf.Operation ‘GradientDescent_1’ type=NoOp>
5、會話進行訓練(for循環),sess.run(),占位符(賦值)
with tf.Session() as sess:# 變量,初始化sess.run(tf.global_variables_initializer())for i in range(1000):opt_,cost_ = sess.run([opt,cost],feed_dict = {y_train:y,X_train:X})if i %50 == 0:print('執行次數是:%d。損失函數值是:%0.4f'%(i+1,cost_))
# for循環結束,訓練結束了
# 獲取斜率和截距W,B = sess.run([w_,b_])print('經過100次訓練,TensorFlow返回線性方程的斜率是:%0.3f。截距是:%0.3f'%(W,B))
執行次數是:1。損失函數值是:581.9765
執行次數是:51。損失函數值是:1.3099
執行次數是:101。損失函數值是:1.0826
。。。
執行次數是:951。損失函數值是:0.4290
經過100次訓練,TensorFlow返回線性方程的斜率是:3.033。截距是:-1.194
6、可視化
plt.scatter(X,y)x = np.linspace(0,14,100)plt.plot(x,W[0]*x + B,color = 'green')