3994: [SDOI2015]約數個數和
Time Limit: 20 Sec??Memory Limit: 128 MB Submit: 1104??Solved: 762 [Submit][Status][Discuss]Description
設d(x)為x的約數個數,給定N、M,求 ?

?
Input
輸入文件包含多組測試數據。
第一行,一個整數T,表示測試數據的組數。
接下來的T行,每行兩個整數N、M。
Output
?T行,每行一個整數,表示你所求的答案。
Sample Input
2
7 4
5 6
7 4
5 6
Sample Output
110
121
121
HINT
?1<=N, M<=50000
1<=T<=50000
圖片好像掛了。。。那張圖是$\sum_{i=1}^n\sum_{j=1}^m d\left(ij\right)$
如果沒掛請忽視上面那排話
由對稱性,不妨設$n\le m$
有一個結論$d\left(xy\right)=\sum_{i\mid x}\sum_{j\mid y}\left[gcd\left(i,j\right)=1\right]$
這個證明的話可以考慮每個質因數的貢獻。。。意會一下
那么可以得到
$ans=\sum_{x=1}^n\sum_{y=1}^m\sum_{i\mid x}\sum_{j\mid y}\left[gcd\left(i,j\right)=1\right]$
$=\sum_{i=1}^n\sum_{j=1}^m\lfloor\frac{n}{i}\rfloor\lfloor\frac{m}{j}\rfloor\left[gcd\left(i,j\right)=1\right]$
$=\sum_{i=1}^n\sum_{j=1}^m\lfloor\frac{n}{i}\rfloor\lfloor\frac{m}{j}\rfloor\sum_{d\mid i,d\mid j}\mu\left(d\right)$
$=\sum_{d=1}^n\mu\left(d\right)\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor}\sum_{j=1}^{\lfloor\frac{m}{d}\rfloor}\lfloor\frac{n}{id}\rfloor\lfloor\frac{m}{id}\rfloor$
$=\sum_{d=1}^n\mu\left(d\right)\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor}\sum_{j=1}^{\lfloor\frac{m}{d}\rfloor}\lfloor\frac{\lfloor\frac{n}{d}\rfloor}{i}\rfloor\lfloor\frac{\lfloor\frac{m}{d}\rfloor}{i}\rfloor$
$=\sum_{d=1}^n\mu\left(d\right)\left(\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor}\lfloor\frac{\lfloor\frac{n}{d}\rfloor}{i}\rfloor\right)\left(\sum_{j=1}^{\lfloor\frac{m}{d}\rfloor}\lfloor\frac{\lfloor\frac{m}{d}\rfloor}{i}\rfloor\right)$
令$g\left(n\right)=\sum_{i=1}^n\lfloor\frac{n}{i}\rfloor$
那么$ans=\sum_{d=1}^n\mu\left(d\right)g\left(\lfloor\frac{n}{d}\rfloor\right)g\left(\lfloor\frac{m}{d}\rfloor\right)$
而$g$可以通過枚舉每個分子然后不停的往倍數上加$1$,然后掃一遍前綴和求出,我為了用Latex碼數學公式現在已經頭昏眼花神志不清,如果你覺得我已經開始胡言亂語了導致你沒看懂那就看看代碼吧
預處理時間復雜度為$O\left(nlnn\right)$
似乎神犇們都是$O\left(n\right)$預處理???我還是太菜了哎
每次詢問的話分塊求,總時間復雜度$O\left(T\sqrt{n}\right)$
#include <cstdio> #include <algorithm> using namespace std; typedef long long ll; const int maxn = 50000 + 10; bool mark[maxn] = {false}; int mu[maxn], g[maxn] = {0}, sum[maxn]; int pri[maxn], prn = 0; void shai(){mu[1] = 1;for(int i = 2; i < maxn; i++){if(!mark[i]){mu[i] = -1;pri[++prn] = i;}for(int j = 1; j <= prn && pri[j] * i < maxn; j++){mark[i * pri[j]] = true;if(i % pri[j] == 0){mu[i * pri[j]] = 0;break;}else mu[i * pri[j]] = -mu[i];}}for(int i = 1; i < maxn; i++)for(int j = i; j < maxn; j += i)g[j]++;sum[0] = g[0] = 0;for(int i = 1; i < maxn; i++){sum[i] = mu[i] + sum[i - 1];g[i] += g[i - 1];} } int main(){shai();int T, n, m;ll ans;scanf("%d", &T);while(T--){scanf("%d %d", &n, &m);if(n > m) swap(n, m);ans = 0;for(int p, i = 1; i <= n; i = p + 1){p = min(n / (n / i), m / (m / i));ans += (ll) (sum[p] - sum[i - 1]) * g[n / p] * g[m / p];}printf("%lld\n", ans);}return 0; }
?