第十五屆全國大學生數學競賽初賽試題(非數學專業類A卷)
文章目錄
- 第十五屆全國大學生數學競賽初賽試題(非數學專業類A卷)
- 題目速覽
- 逐題詳解
題目速覽
-
求極限:
lim?x→3x3+9?62?x3?23=.\lim\limits_{x \to 3} \frac{\sqrt{x^3 + 9} - 6}{2 - \sqrt{x^3 - 23}} = \rule{2cm}{0.7pt}.x→3lim?2?x3?23?x3+9??6?=. -
設函數 z=f(x2?y2,xy)z = f(x^2 - y^2, xy)z=f(x2?y2,xy), 且 f(u,v)f(u, v)f(u,v) 具有連續的二階偏導數, 則
?2z?x?y=.\frac{\partial^2 z}{\partial x \partial y} = \rule{2cm}{0.7pt}.?x?y?2z?=. -
設 nnn 為正整數, f(x)=1x2?3x+2f(x) = \dfrac{1}{x^2 - 3x + 2}f(x)=x2?3x+21?, 則:
f(n)(0)=.f^{(n)}(0) =\rule{2cm}{0.7pt}.f(n)(0)=. -
冪級數
∑n=1∞(?1)n?1n(2n?1)x2n\sum\limits_{n = 1}^{\infty} \frac{(-1)^{n - 1}}{n(2n - 1)} x^{2n}n=1∑∞?n(2n?1)(?1)n?1?x2n
的收斂域為 .\rule{2cm}{0.7pt}.. -
設曲面 Σ\SigmaΣ 是平面 y+z=5y + z = 5y+z=5 被柱面 x2+y2=25x^2 + y^2 = 25x2+y2=25 所截得的部分, 則曲面積分
?Σ(x+y+z)dS=\iint\limits_{\Sigma} (x + y + z) \mathrm{d}S = \rule{2cm}{0.7pt}Σ??(x+y+z)dS=
6.(x2+y2+3)dydx=2x(2y?x2y).(x^2 + y^2 + 3)\frac{\mathrm{d}y}{\mathrm{d}x} = 2x\left(2y - \frac{x^2}{y}\right).(x2+y2+3)dxdy?=2x(2y?yx2?).
-
設 Σ1\Sigma_1Σ1? 是以 (0,4,0)(0, 4, 0)(0,4,0) 為頂點且與曲面 Σ2\Sigma_2Σ2?: x23+y24+z23=1(y>0)\dfrac{x^2}{3} + \dfrac{y^2}{4} + \dfrac{z^2}{3} = 1 (y > 0)3x2?+4y2?+3z2?=1(y>0) 相切的圓錐面, 求曲面 Σ1\Sigma_1Σ1? 與 Σ2\Sigma_2Σ2? 所圍成的空間區域的體積.
-
設 a>1a > 1a>1, 求極限
lim?n→∞n∫1adx1+xn.\lim\limits_{n \to \infty} n \int_{1}^{a} \frac{\mathrm{d}x}{1 + x^n}.n→∞lim?n∫1a?1+xndx?. -
設 f(x)f(x)f(x) 在 [0,1][0, 1][0,1] 上有連續的導數, 且 f(0)=0f(0) = 0f(0)=0. 求證:
∫01f2(x)dx?4∫01(1?x)2[f′(x)]2dx,\int_{0}^{1} f^2(x) \mathrm{d}x \leqslant 4 \int_{0}^{1} (1 - x)^2 \left[ f'(x) \right]^2 \mathrm{d}x,∫01?f2(x)dx?4∫01?(1?x)2[f′(x)]2dx,
并求使得上式成為等式的 f(x)f(x)f(x). -
設數列{xn}\{x_n\}{xn?} 滿足 x0=13,xn+1=xn21?xn+xn2,n?0x_0 = \dfrac{1}{3}, x_{n + 1} = \dfrac{x_n^2}{1 - x_n + x_n^2}, n \geqslant 0x0?=31?,xn+1?=1?xn?+xn2?xn2??,n?0. 證明無窮級數
∑n=0∞xn\sum\limits_{n = 0}^{\infty} x_nn=0∑∞?xn?
收斂, 并求其和.
逐題詳解
求極限:
lim?x→3x3+9?62?x3?23=.\lim\limits_{x \to 3} \frac{\sqrt{x^3 + 9} - 6}{2 - \sqrt{x^3 - 23}} = \rule{2cm}{0.7pt}.x→3lim?2?x3?23?x3+9??6?=.
解
lim?x→3x3+9?62?x3?23=lim?x→3(x3+9?6)(x3+9+6)(2?x3?23)(2+x3?23)?lim?x→32+x3?23x3+9+6=lim?x→3x3+9?364?x3+23?lim?x→32+x3?23x3+9+6=?13\begin{align*} \lim\limits_{x \to 3} \frac{\sqrt{x^3 + 9} - 6}{2 - \sqrt{x^3 - 23}} &=\lim\limits_{x \to 3} \frac{\left(\sqrt{x^3 + 9} - 6\right)\left(\sqrt{x^3 + 9} + 6\right)}{\left(2 - \sqrt{x^3 - 23}\right)\left(2 + \sqrt{x^3 - 23}\right)} \cdot \lim\limits_{x \to 3} \frac{2 + \sqrt{x^3 - 23}}{\sqrt{x^3 + 9} + 6}\\ &=\lim\limits_{x \to 3} \frac{x^3 + 9- 36}{4 - x^3 + 23}\ \cdot \lim\limits_{x \to 3} \frac{2 + \sqrt{x^3 - 23}}{\sqrt{x^3 + 9} + 6}\\ &=-\frac{1}{3} \end{align*}x→3lim?2?x3?23?x3+9??6??=x→3lim?(2?x3?23?)(2+x3?23?)(x3+9??6)(x3+9?+6)??x→3lim?x3+9?+62+x3?23??=x→3lim?4?x3+23x3+9?36???x→3lim?x3+9?+62+x3?23??=?31??
設函數 z=f(x2?y2,xy)z = f(x^2 - y^2, xy)z=f(x2?y2,xy), 且 f(u,v)f(u, v)f(u,v) 具有連續的二階偏導數, 則
?2z?x?y=.\frac{\partial^2 z}{\partial x \partial y} = \rule{2cm}{0.7pt}.?x?y?2z?=.
解
?z?x=fu?2x+fv?y?2z?x?y=2x(fuu?(?2y)+fuv?x)+y(fuv?(?2y)+fvv?x)+fv=?4xyfuu+2(x2?y2)fuv+xyfvv+fv\begin{align*} \frac{\partial z}{\partial x}&=f_{u}\cdot 2x +f_{v}\cdot y\\ \frac{\partial^2 z}{\partial x\partial y}&=2x(f_{uu}\cdot (-2y)+f_{uv}\cdot x)+y(f_{uv} \cdot(-2y)+f_{vv}\cdot x)+f_v\\ &=-4xyf_{uu}+2(x^2-y^2)f_{uv}+xyf_{vv}+f_{v} \end{align*} ?x?z??x?y?2z??=fu??2x+fv??y=2x(fuu??(?2y)+fuv??x)+y(fuv??(?2y)+fvv??x)+fv?=?4xyfuu?+2(x2?y2)fuv?+xyfvv?+fv??
設 nnn 為正整數, f(x)=1x2?3x+2f(x) = \dfrac{1}{x^2 - 3x + 2}f(x)=x2?3x+21?, 則 :
f(n)(0)=.f^{(n)}(0) =\rule{2cm}{0.7pt}.f(n)(0)=.
解
將f(x)=1x2?3x+2f(x) = \dfrac{1}{x^2 - 3x + 2}f(x)=x2?3x+21?變為:(x2?3x+2)f(x)=1(x^2-3x+2)f(x)=1(x2?3x+2)f(x)=1兩邊同時求導:
((x2?3x+2)f(x))(n)=0?2f(n)?3nf(n?1)+n(n?1)f(n?2)=0\begin{align*} \left((x^2-3x+2)f(x)\right)^{(n)}&=0\\ \Rightarrow 2{f}^{(n)}-3nf^{(n-1)}+n(n-1)f^{(n-2)}&=0 \end{align*} ((x2?3x+2)f(x))(n)?2f(n)?3nf(n?1)+n(n?1)f(n?2)?=0=0?
取bn=f(n)n!b_n=\dfrac{f^{(n)}}{n!}bn?=n!f(n)?得到方程:
2bn?3bn?1+bn?2=02b_n-3b_{n-1}+b_{n-2}=0 2bn??3bn?1?+bn?2?=0
同時有初值條件:b0=12b_0=\dfrac{1}{2}b0?=21?與b1=34b_1=\dfrac{3}{4}b1?=43?
解差分方程得到:
bn=1?12n+1b_n=1-\frac{1}{2^{n+1}}bn?=1?2n+11?
故:
fn(0)=n!(1?12n+1)f^{n}(0)=n!\left(1-\frac{1}{2^{n+1}}\right)fn(0)=n!(1?2n+11?)
冪級數
∑n=1∞(?1)n?1n(2n?1)x2n\sum\limits_{n = 1}^{\infty} \frac{(-1)^{n - 1}}{n(2n - 1)} x^{2n}n=1∑∞?n(2n?1)(?1)n?1?x2n
的收斂域為 .\rule{2cm}{0.7pt}..
解
L=lim?n→∞∣an+1an∣=lim?n→∞∣(?1)n(n+1)(2n+1)?n(2n?1)(?1)n?1∣=lim?n→∞n(2n?1)(n+1)(2n+1)=1.\begin{align*} L &= \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(-1)^n}{(n+1)(2n+1)} \cdot \frac{n(2n-1)}{(-1)^{n-1}} \right| \\&= \lim_{n \to \infty} \frac{n(2n-1)}{(n+1)(2n+1)} = 1. \end{align*}L?=n→∞lim??an?an+1???=n→∞lim??(n+1)(2n+1)(?1)n??(?1)n?1n(2n?1)??=n→∞lim?(n+1)(2n+1)n(2n?1)?=1.?
故,x∈(?1,1)x\in(-1,1)x∈(?1,1),取x=±1x=\pm 1x=±1.得到數項級數:
∑n=0+∞(?1)nn(2n?1)\sum_{n=0}^{+\infty}\frac{(-1)^n}{n(2n-1)}n=0∑+∞?n(2n?1)(?1)n?
顯然絕對收斂。
因此:x∈[?1,1]x\in [-1,1]x∈[?1,1]
設曲面 Σ\SigmaΣ 是平面 y+z=5y + z = 5y+z=5 被柱面 x2+y2=25x^2 + y^2 = 25x2+y2=25 所截得的部分, 則曲面積分
?Σ(x+y+z)dS=\iint\limits_{\Sigma} (x + y + z) \mathrm{d}S = \rule{2cm}{0.7pt}Σ??(x+y+z)dS=
解
?Σ(x+y+z)dS=2?ΣxOy:x2+y2≤25(x+5)dxdy=52?ΣxOy:x2+y2≤25dxdy=1252π\begin{align*} \iint_{\Sigma}(x+y+z)\mathrm{d}S&=\sqrt{2}\iint_{\Sigma_{xOy}:x^2+y^2\leq 25}(x+5)\mathrm{d}x\mathrm{d}y\\ &=5\sqrt{2}\iint_{\Sigma_{xOy}:x^2+y^2\leq 25}\mathrm{d}x\mathrm{d}y\\ &=125\sqrt{2}\pi \end{align*} ?Σ?(x+y+z)dS?=2??ΣxOy?:x2+y2≤25?(x+5)dxdy=52??ΣxOy?:x2+y2≤25?dxdy=1252?π?
解微分方程:
(x2+y2+3)dydx=2x(2y?x2y).(x^2 + y^2 + 3)\frac{\mathrm{d}y}{\mathrm{d}x} = 2x\left(2y - \frac{x^2}{y}\right).(x2+y2+3)dxdy?=2x(2y?yx2?).
解
做換元:{z=y2+1x2+2P=x2+2\begin{cases} z=\dfrac{y^2+1}{x^2+2}\\ P=x^2+2 \end{cases}????z=x2+2y2+1?P=x2+2?
(x2+y2+3)dydx=2x(2y?x2y)?PdzdP=?z2?3z+2z+1?(z?2)3(z?1)2=?CP?(2x2?y+2+3)3=C(x2?y2+1)2\begin{align*} (x^2 + y^2 + 3)\frac{\mathrm{d}y}{\mathrm{d}x} &= 2x\left(2y - \frac{x^2}{y}\right)\\ \Rightarrow P\dfrac{\mathrm{d}z}{\mathrm{d}P}&=-\frac{z^2-3z+2}{z+1}\\ \Rightarrow \dfrac{(z-2)^3}{(z-1)^2} &=-\frac{C}{P} \\ \Rightarrow (2x^2-y+2+3)^3&=C(x^2-y^2+1)^2 \end{align*}(x2+y2+3)dxdy??PdPdz??(z?1)2(z?2)3??(2x2?y+2+3)3?=2x(2y?yx2?)=?z+1z2?3z+2?=?PC?=C(x2?y2+1)2?
設 Σ1\Sigma_1Σ1? 是以 (0,4,0)(0, 4, 0)(0,4,0) 為頂點且與曲面 Σ2\Sigma_2Σ2?: x23+y24+z23=1(y>0)\dfrac{x^2}{3} + \dfrac{y^2}{4} + \dfrac{z^2}{3} = 1 (y > 0)3x2?+4y2?+3z2?=1(y>0) 相切的圓錐面, 求曲面 Σ1\Sigma_1Σ1? 與 Σ2\Sigma_2Σ2? 所圍成的空間區域的體積.
解
容易得到圓錐面方程:Σ1:4(x2+z2)=(y?4)2\Sigma_1:4(x^2+z^2)=(y-4)^2Σ1?:4(x2+z2)=(y?4)2
V=?x2+z2≤94[(4?2x2+z2)?21?13(x2+z2)]dxdz=4π?94?2∫02π∫032r2dr?2∫02π∫0321?r23rdr=9π?4π∫032r2dr?4π∫0321?r23rdr=9π?9π2?7π2=π\begin{align*} V&=\iint\limits_{x^2+z^2\leq \frac{9}{4}}\left[(4-2\sqrt{x^2+z^2})-2\sqrt{1-\frac{1}{3}(x^2+z^2)}\right]\mathrm{d}x\mathrm{d}z \\ &= 4\pi \cdot \frac{9}{4} - 2\int_{0}^{2\pi} \int_{0}^{\frac{3}{2}} r^2 \mathrm{d}r - 2\int_{0}^{2\pi} \int_{0}^{\frac{3}{2}} \sqrt{1 - \frac{r^2}{3}} r \mathrm{d}r \\ &= 9\pi - 4\pi \int_{0}^{\frac{3}{2}} r^2 \mathrm{d}r - 4\pi \int_{0}^{\frac{3}{2}} \sqrt{1 - \frac{r^2}{3}} r \mathrm{d}r \\ &= 9\pi - \frac{9\pi}{2} - \frac{7\pi}{2} \\ &= \pi \end{align*}V?=x2+z2≤49???[(4?2x2+z2?)?21?31?(x2+z2)?]dxdz=4π?49??2∫02π?∫023??r2dr?2∫02π?∫023??1?3r2??rdr=9π?4π∫023??r2dr?4π∫023??1?3r2??rdr=9π?29π??27π?=π?
設 a>1a > 1a>1, 求極限
lim?n→∞n∫1adx1+xn.\lim\limits_{n \to \infty} n \int_{1}^{a} \frac{\mathrm{d}x}{1 + x^n}.n→∞lim?n∫1a?1+xndx?.
解
Changing xxxto 1/x1/x1/xgives
In:=n∫1adx1+xn=n∫b1xn?21+xndx,I_n := n \int_{1}^{a} \frac{dx}{1 + x^n} = n \int_{b}^{1} \frac{x^{n - 2}}{1 + x^n} dx, In?:=n∫1a?1+xndx?=n∫b1?1+xnxn?2?dx,
where b=1a∈(0,1)b = \frac{1}{a} \in (0, 1)b=a1?∈(0,1). Now, use integration by parts with 1x=u\frac{1}{x} = ux1?=u and nxn?11+xndx=dv\frac{nx^{n - 1}}{1 + x^n} dx = dv1+xnnxn?1?dx=dv. Then du=?dxx2du = -\frac{dx}{x^2}du=?x2dx? and v=ln?(1+xn)v = \ln(1 + x^n)v=ln(1+xn) and so
In=ln?2?ln?(1+bn)b+∫b1ln?(1+xn)x2dx.I_n = \ln 2 - \frac{\ln(1 + b^n)}{b} + \int_{b}^{1} \frac{\ln(1 + x^n)}{x^2} dx. In?=ln2?bln(1+bn)?+∫b1?x2ln(1+xn)?dx.
Since b∈(0,1)b \in (0, 1)b∈(0,1), we have lim?n→∞bn=0\lim\limits_{n \to \infty} b^n = 0n→∞lim?bn=0 and so
lim?n→∞In=ln?2+lim?n→∞∫b1ln?(1+xn)x2dx.(*)\lim_{n \to \infty} I_n = \ln 2 + \lim\limits_{n \to \infty} \int_{b}^{1} \frac{\ln(1 + x^n)}{x^2} dx. \tag{*} n→∞lim?In?=ln2+n→∞lim?∫b1?x2ln(1+xn)?dx.(*)
Since $\ln(1 + t) \leq t, \ t > -1 $, we have 0≤ln?(1+xn)x2≤xn?20 \leq \frac{\ln(1 + x^n)}{x^2} \leq x^{n - 2}0≤x2ln(1+xn)?≤xn?2 and hence 0≤∫b1ln?(1+xn)x2dx≤1?bn?1n?10 \leq \int_{b}^{1} \frac{\ln(1 + x^n)}{x^2} dx \leq \frac{1 - b^{n - 1}}{n - 1}0≤∫b1?x2ln(1+xn)?dx≤n?11?bn?1? implying that lim?n→∞∫b1ln?(1+xn)x2dx=0\lim\limits_{n \to \infty} \int_{b}^{1} \frac{\ln(1 + x^n)}{x^2} dx = 0n→∞lim?∫b1?x2ln(1+xn)?dx=0, by the squeeze theorem. Thus, by (*), $\lim\limits_{n \to \infty} I_n = \ln 2 $.
Now, as an exercise, try to prove or disprove this claim: for any b∈(?1,1)b \in (-1, 1)b∈(?1,1):
lim?n→∞n∫b1dx1+xn=ln?2.\lim\limits_{n \to \infty} n \int_{b}^{1} \frac{dx}{1 + x^n} = \ln 2.n→∞lim?n∫b1?1+xndx?=ln2.
設 f(x)f(x)f(x) 在 [0,1][0, 1][0,1] 上有連續的導數, 且 f(0)=0f(0) = 0f(0)=0. 求證:
∫01f2(x)dx?4∫01(1?x)2[f′(x)]2dx,\int_{0}^{1} f^2(x) \mathrm{d}x \leqslant 4 \int_{0}^{1} (1 - x)^2 \left[ f'(x) \right]^2 \mathrm{d}x,∫01?f2(x)dx?4∫01?(1?x)2[f′(x)]2dx,
并求使得上式成為等式的 f(x)f(x)f(x).
解
∫01f2(x)dx=∫01(1?x)f′(x)?f(x)dx?(∫01(1?x)2(f′(x))2dx)12(∫01f2(x)dx)12?4∫01(1?x)2[f′(x)]2dx\begin{align*} \int_{0}^{1} f^2(x) \mathrm{d}x &= \int_{0}^{1} (1 - x) f'(x) \cdot f(x) \,\mathrm{d}x\\& \leqslant \left( \int_{0}^{1} (1 - x)^2 (f'(x))^2 \,\mathrm{d}x \right)^{\frac{1}{2}} \left( \int_{0}^{1} f^2(x) \,\mathrm{d}x \right)^{\frac{1}{2}}\\&\leqslant 4 \int_{0}^{1} (1 - x)^2 [f'(x)]^2 \,\mathrm{d}x \end{align*}∫01?f2(x)dx?=∫01?(1?x)f′(x)?f(x)dx?(∫01?(1?x)2(f′(x))2dx)21?(∫01?f2(x)dx)21??4∫01?(1?x)2[f′(x)]2dx?
當且僅當cf(x)=(1?x)f′(x)cf(x)=(1-x)f^{\prime}(x)cf(x)=(1?x)f′(x)時,可以取等,此時:
f(x)=0f(x)=0f(x)=0
設數列{xn}\{x_n\}{xn?} 滿足 x0=13,xn+1=xn21?xn+xn2,n?0x_0 = \dfrac{1}{3}, x_{n + 1} = \dfrac{x_n^2}{1 - x_n + x_n^2}, n \geqslant 0x0?=31?,xn+1?=1?xn?+xn2?xn2??,n?0. 證明無窮級數
∑n=0∞xn\sum\limits_{n = 0}^{\infty} x_nn=0∑∞?xn?
收斂, 并求其和.
解
xn+1=xn21?xn+xn2?xn=xn1?xn?xn+11?xn+1\begin{align*} x_{n + 1} &= \dfrac{x_n^2}{1 - x_n + x_n^2}\\ \Rightarrow x_n&=\frac{x_n}{1-x_n}-\frac{x_{n+1}}{1-x_{n+1}} \end{align*}xn+1??xn??=1?xn?+xn2?xn2??=1?xn?xn???1?xn+1?xn+1???
那么:
∑n=0∞xn=∑n=0∞(xn1?xn?xn+11?xn+1)=x01?x0=12\begin{align*} \sum\limits_{n = 0}^{\infty} x_n&=\sum\limits_{n = 0}^{\infty} \left(\frac{x_n}{1-x_n}-\frac{x_{n+1}}{1-x_{n+1}}\right)\\ &=\frac{x_0}{1-x_0}=\frac{1}{2} \end{align*}n=0∑∞?xn??=n=0∑∞?(1?xn?xn???1?xn+1?xn+1??)=1?x0?x0??=21??